Skip to main content
Log in

Interaction of neuronal NOS and catecholamines in regulation of expression of proteins of apoptosis by vasopressinergic hypothalamic neurons

  • Comparative and Ontogenic Physiology
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The work deals with studies on vasopressinergic neurons of hypothalamic supraoptic and paravenricular nuclei in the wild type mice and the neuronal nitric oxide synthase (nNOS) in the gene knockouted mice at a decrease of the brain catecholamine (CA) level caused by administration of the blocker of activity of tyrosine hydroxylase α-methyl-paratyrosine (α-MPT) and at the CA level decrease on the background of functional activity of the vasopressinergic neurons caused by dehydration of animals. There were analyzed changes in the number of neurons in the magnocellular hypothalamic nuclei expressing proapoptotic proteins caspase-8 and caspase-9, p53, and antiapoptotic protein Bcl-2. Disturbance of the CAergic innervation was shown to be a strong damaging factor leading to apoptosis of neurons regardless of the presence of nNOS in the cells. However, at disturbance of the CAergic innervation due to the 5-day mouse dehydration, no death of neurons by apoptosis was revealed. Thus, it is possible that functional activation prevents the hypothalamic vasopressinergic neurons from death at a decrease of the CA level in brain. The main difference of the nNOS gene knockouts is the absence of activation of the Bcl-2 expression under all used actions. This confirms our suggestion about interaction of CA and NO in triggering of expression of the antiapoptotic protein Bcl-2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mayer, B. and Hemmens, B., Biosynthesis and Action of Nitric Oxide in Mammalian Cells, Trends Biochem. Sci., 1997, vol. 22, pp. 477–481.

    Article  PubMed  CAS  Google Scholar 

  2. Brüne, B., von Knethen, F., and Sandau, K.B., Nitric Oxide and Its Role in Apoptosis, Eur. J. Pharmacol., 1998, vol. 351, pp. 261–272.

    Article  PubMed  Google Scholar 

  3. Dawson, V.L., Dawson, T.M., Bartley, D.A., Uhl, G.R., and Snyder, S.H., Mechanisms of Nitric Oxide-Mediated Neurotoxicity in Primary Brain Cultures, J. Neurosci., 1993, vol. 13, pp. 2651–2661.

    PubMed  CAS  Google Scholar 

  4. Lipton, S.A., Choi, Y.B., Pan, Z.H., Lei, S.Z., Chen, H.S., Sucher, N.J., Loscalzo, J., Singel, D.J., and Stamler, J.S., A Redox-Based Mechanism for the Neuroprotective and Neurodestructive Effects of Nitric Oxide and Related Nitroso-Compounds, Nature, 1993, vol. 364, pp. 626–632.

    Article  PubMed  CAS  Google Scholar 

  5. Liberatore, G.T., Jackson-Lewis, V., Vukosavic, S., Mandir, A.S., Vila, M., McAuliffe, W.G., Dawson, V.L., Dawson, T.M., and Przedborski, S., Inducible Nitric Oxide Synthase Stimulates Dopaminergic Neurodegeneration in the MPTP Model of Parkinson Disease, Nature Med., 1999, vol. 5, pp. 1403–1409.

    Article  PubMed  CAS  Google Scholar 

  6. Wu, D.Ch., Jackson-Lewis, V., Vila, M., Tieu, K., Teissmann, P., Vadseth, C., Choi, D.K., Ischiropoulos, H., and Przedborski, S., Blockade of Microglial Activation is Neuroprotective in the l-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine Mouse Model of Parkinson Disease, J. Neurosci., 2002, vol. 22, pp. 1763–1771.

    PubMed  CAS  Google Scholar 

  7. Ha, K.S., Kim, K.M., Kwon, Y.G., Bai, S.K., Nam, W.D., Yoo, Y.M., Kim, P.K., Chung, H.T., Billiar, T.R., and Kim, Y.M., Nitric Oxide Prevents 6-Hydroxydopamine-Induced Apoptosis in PC12 Cells through cGMP-Dependent PI3 Kinase/Akt Activation, FASEB J., 2003, vol. 17, pp. 1036–1047.

    Article  PubMed  CAS  Google Scholar 

  8. Chan, A.S., Ng, L.W., Poon, L.S., Chan, W.W., and Wong, Y.H., Dopaminergic and Adrenergic Toxicities on SK-N-MC Human Neuroblastoma Cells are Mediated through G Protein Signaling and Oxidative Stress, Apoptosis, 2007, vol. 12, pp. 167–179.

    Article  PubMed  CAS  Google Scholar 

  9. Alagarsamy, S., Phillips, M., Pappas, T., and Johnson, K.M., Dopamine Neurotoxicity in Cortical Neurons, Drug Alcohol. Depend., 1997, vol. 48, pp. 105–111.

    Article  PubMed  CAS  Google Scholar 

  10. Noh, J.S., Kim, E.Y., Kang, J.S., Kim, H.R., Oh, Y.J., and Gwag, B.J., Neurotoxic and Neuroprotective Actions of Catecholamines in Cortical Neurons, Exp. Neurol., 1999, vol. 159, pp. 217–224.

    Article  PubMed  CAS  Google Scholar 

  11. Purba, J.S., Hofman, M.A., and Swaab, D.F., Decreased Number of Oxytocin-Immunoreactive Neurons in the Paraventricular Nucleus of the Hypothalamus in Parkinson’s Disease, Neurology, 1994, vol. 44, pp. 84–89.

    PubMed  CAS  Google Scholar 

  12. Sundquist, J., Forsling, M., Olsson, J., and Akerlundt, M., Cerebrospinal Fluid Arginine Vasopressin in Degenerative Disorders and Other Neurological Diseases, J. Neurol. Neurosurg. Psychiat., 1983, vol. 46, pp. 14–17.

    Article  PubMed  CAS  Google Scholar 

  13. Bugajski, J., Gadek-Michalska, A., Gld, R., and Borycz, J., Influence of Nitric Oxide Synthase Inhibitors on the Vasopressin-Induced Pituitary-Adrenocortical Activity, J. Physiol. Pharmacol., 1998, vol. 49, pp. 617–626.

    PubMed  CAS  Google Scholar 

  14. Vacher, C.M., Hardin-Pouzet, H., Steinbusch, H.W., Calas, A., and De Vente, J., The Effects of Nitric Oxide on Magnocellular Neurons Could Involve Multiple Indirect Cyclic GMP-Dependent Pathways, Eur. J. Neurosci., 2003, vol. 17, pp. 455–466.

    Article  PubMed  CAS  Google Scholar 

  15. Yamova, L., Atochin, D., Glazova, M., Chernigovskaya, E., and Huang, P., Role of Neuronal Nitric Oxide in the Regulation of Vasopressin Expression and Release in Response to Inhibition of Catecholamine Synthesis and Dehydration, Neurosci. Lett., 2007, vol. 426, pp. 160–165.

    Article  PubMed  CAS  Google Scholar 

  16. Taranukhin, A.G., Glazova, M.V., Evteeva, S.E., Iamova, L.A., and Chernigovskaya, E.V., Catecholamines and Nitric Oxide Participation in the Regulation of Apoptosis in Nonapeptidergic Neurons in the Rat Hypothalamus, Zh. Evol. Biokhim. Fiziol., 2002, vol. 38, pp. 615–619.

    PubMed  CAS  Google Scholar 

  17. Widerlov, E., Dose-Dependent Pharmacokinetics of α-Methyl-p-Tyrosine (α-MT) and Comparison of Catecholamine Turnover Rates after Two Doses of α-MT, J. Neural Transmis., 1979, vol. 44, pp. 145–158.

    Article  CAS  Google Scholar 

  18. Kuida, K., Caspase-9, Int. J. Biochem. Cell Biol., 2000, vol. 32, no. 2, pp. 121–124.

    Article  PubMed  CAS  Google Scholar 

  19. Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S.M., Ahmad, M., Alnemri, E.S., and Wang, X., Cytochrome c and dATP-Dependent Formation of Apaf-1/Caspase-9 Complex Initiates an Apoptotic Protease Cascade, Cell, 1997, vol. 91, pp. 479–489.

    Article  PubMed  CAS  Google Scholar 

  20. Morris, E.J., Keramaris, E., Rideout, H.J., Slack, R.S., Dyson, N.J., Stefanis, L., and Park, D.S., Cyclin-Dependent Kinase and p53 Pathways are Activated Independently and Mediate Bax Activation in Neurons after DNA Damage, J. Neurosci., 2001, vol. 21, pp. 5017–5026.

    PubMed  CAS  Google Scholar 

  21. Moroni, M.C., Hickman, E.S., Lazzerini Denchi, E., Caprara, G., Colli, E., Cecconi, F., Müller, H., and Helin, K., Apaf-1 Is a Transcriptional Target for E2F and p53, Natl. Cell. Biol. 2001, vol. 3, pp. 552–558.

    Article  CAS  Google Scholar 

  22. Bargonetti, J. and Manfredi, J.J., Multiple Roles of the Tumor Suppressor p53, Curr. Opin. Oncol., 2002, vol. 14, pp. 86–91.

    Article  PubMed  CAS  Google Scholar 

  23. Cregan, S.P., Fortin, A., MacLaurin, J.G., Callaghan, S.M., Cecconi, F., Yu, S.W., Dawson, T.M., Dawson, V.L., Park, D.S., Kroemer, G., and Slack, R.S., Apoptosis-Inducing Factor Is Involved in the Regulation of Caspase-Independent Neuronal Cell Death, J. Cell. Biol., 2002, vol. 158, pp. 507–517.

    Article  PubMed  CAS  Google Scholar 

  24. Stennicke, H.R. and Salvesen, G.S., Properties of the Caspases, Biochim. Biophys. Acta, 1998, vol. 1387, pp. 17–31.

    Article  PubMed  CAS  Google Scholar 

  25. Chernigovskaya, E.V., Taranukhin, A.G., Glazova, M.V., Yamova, L.A., and Fedorov, L.M., Apoptotic Signaling Proteins: Possible Participation in the Regulation of Vasopressin and Cat echolamines Biosynthesis in the Hypothalamus, Histochem. Cell. Biol., 2005, vol. 124, pp. 523–533.

    Article  PubMed  CAS  Google Scholar 

  26. Chernigovskaya, E.V., Nikitina, L.S., Dorofeeva, N.A., and Glazova, M.V., Effects of Selective Bcl-2 Inhibitor HA14-1 Treatments on Functional Activity of Magnocellular Vasopressinergic Neurons of Rat Hypothalamus, Neurosci. Lett., 2008, vol. 437, pp. 59–64.

    Article  PubMed  CAS  Google Scholar 

  27. Kova, K.J., Fo, A., and Sawchenko, P.E., Glucocorticoid Negative Feedback Selectively Targets Vasopressin Transcription in Parvocellular Neurosecretory Neurons, J. Neurosci., 2000, vol. 20, pp. 3843–3852.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Chernigovskaya.

Additional information

Original Russian Text © E. V. Chernigovskaya, L. A. Yamova, D. Atochin, P. Huang, M. V. Glazova, 2011, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2011, Vol. 47, No. 3, pp. 232–238.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chernigovskaya, E.V., Yamova, L.A., Atochin, D. et al. Interaction of neuronal NOS and catecholamines in regulation of expression of proteins of apoptosis by vasopressinergic hypothalamic neurons. J Evol Biochem Phys 47, 275–283 (2011). https://doi.org/10.1134/S0022093011030078

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093011030078

Keywords

Navigation