Skip to main content
Log in

Flow structure and heat transfer during the separation of a pulsating flow

  • Heat and Mass Transfer and Physical Gasdynamics
  • Published:
High Temperature Aims and scope

Abstract

The results of experimental studies of heat transfer in the separation region and the kinematic structure of the air flow in a channel behind a rib under superimposed discharge pulsations are presented. The effect of heat transfer enhancement of up to1.5 times in comparison with the stationary regime has been established. In the near wake behind the obstacle, it was up to five times. An observable decrease in the reat-tachment length (of up to two times) has been revealed under the pulsating flow regimes. The mechanism of these phenomena has been established, and typical features of the structure of pulsating separated flows have been described on the basis of the results of visualization experiments. The classification of these flows is proposed, and a regime map has been drawn up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gündoǧdu, M.Y. and Carpinlioǧlu, M.Ö., Nippon Kikai Gakkai Ponbunshu, B-hen (Jpn. Soc. Mech. Eng., Ser. B), 1999, vol. 42, no. 3, p. 384.

    Google Scholar 

  2. Gündoǧdu, M.Y. and Carpinlioǧlu, M.Ö., Nippon Kikai Gakkai Ponbunshu, B-hen (Jpn. Soc. Mech. Eng., Ser. B), 1999, vol. 42, no. 3, p. 398.

    Google Scholar 

  3. Galitseiskii, B.M., Ryzhov, Yu.A., and Yakush, E.V., Teplovye i gidrodinamicheskie protsessy v koleblyushchikhsya potokakh (Thermal and Hydrodynamic Processes in Oscillating Flows), Moscow: Mashinostroenie, 1977.

    Google Scholar 

  4. Dreitser, G.A. and Kraev, V.M., Turbulentnoe techenie gaza pri gidrodinamicheskoi nestatsionarnosti (Turbulent Gas Flow with the Hydrodynamic Non-Stationarity), Krasnoyarsk: Siberian Aerospace Academy, 2001.

    Google Scholar 

  5. Grigor’ev, M.M., Kuz’min, V.V., and Fafurin, A.V., Inzh.-Fiz. Zh., 1990, vol. 59, no. 5, p. 725.

    Google Scholar 

  6. Valueva, E.P., High Temp., 2005, vol. 43, no. 6, p. 890.

    Article  Google Scholar 

  7. Valueva, E.P., High Temp., 2006, vol. 44, no. 1, p. 120.

    Article  Google Scholar 

  8. Valueva, E.P., High Temp., 2007, vol. 45, no. 4, p. 502.

    Article  Google Scholar 

  9. Kraev, V.M., Doctoral (Tech.) Dissertation, Moscow: Moscow Aviation Institute, 1998.

  10. Komarov, P.L. and Polyakov, A.F., Preprint of the Scientific Association for High Temperatures of the Russian Academy of Sciences, Moscow, 1996, no. 2-396.

  11. Leont’ev, A.I., Ivin, V.I., and Grekhov, L.V., Inzh.-Fiz. Zh., 1984, vol. 47, no. 4, p. 543.

    Google Scholar 

  12. Simpson, R., Teor. Osn. Inzh. Raschetov, 1981, vol. 103, no. 3, p. 131.

    MathSciNet  Google Scholar 

  13. Mullin, T., Greated, C.A., and Grant, I., Phys. Fluids, 1980, vol. 23, no. 4, p. 669.

    Article  ADS  Google Scholar 

  14. Jarosinski, W., J. KONES Int. Combust. Eng., 2003, vol. 10, nos. 3–4, p. 1.

    Google Scholar 

  15. Saric, S., Jakirlic, S., and Tropea, C., J. Fluids Eng., 2005, vol. 127, p. 879.

    Article  Google Scholar 

  16. Lee, T.S. and Shi, Z.D., Int. J. Numer. Methods Fluids, 1999, vol. 30, p. 813.

    Article  ADS  MATH  Google Scholar 

  17. Pozarlik, A.K., Panara, D., Kok, J.B.W., and Meer, T.H., in Proceedings of the Fifth European Thermal-Sciences Conference, Eindhoven, The Netherlands, May 18–22, 2008, Stoffels, G.G.M., van der Meer, T.H., and van Steenhoven, A.A, Eds., Eindhoven, 2008, p. 1.

  18. Davletshin, I.A. and Mikheev, N.I., Izv. Ross. Akad. Nauk, Energ., 2005, no. 6, p. 16.

  19. Zverev, V.G., Nazarenko, V.A., Pan’ko, S.V., and Teploukhov, A.V., High Temp., 2010, vol. 48, no. 5, p. 741.

    Article  Google Scholar 

  20. Davletshin, I.A., Mikheev, N.I., and Molochnikov, V.M., Thermophys. Aeromech., 2008, vol. 15, no. 2, p. 215.

    Article  ADS  Google Scholar 

  21. Mikheev, N.I., Davletshin, I.A., and Molochnikov, V.M., Tepl. Protsessy Tekh., 2009, vol. 1, no. 8, p. 314.

    Google Scholar 

  22. Davletshin, I.A., Mikheev, N.I., and Molochnikov, V.M., Dokl. Phys., 2007, vol. 52, no. 12, p. 695.

    Article  ADS  MATH  Google Scholar 

  23. Miheev, N.I., Davletshin, I.A., Faskhutdinov, R.E., and Dushina, O.A., Heat Transfer Res., 2008, vol. 39, no. 2, p. 175.

    Article  Google Scholar 

  24. Davletshin, I.A. and Mikheev, N.I., Fluid Dyn., 2010, vol. 45, no. 5, p. 753.

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Davletshin.

Additional information

Original Russian Text © I.A. Davletshin, N.I. Mikheev, 2012, published in Teplofizika Vysokikh Temperatur, 2012, Vol. 50, No. 3, pp. 442–449.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davletshin, I.A., Mikheev, N.I. Flow structure and heat transfer during the separation of a pulsating flow. High Temp 50, 412–419 (2012). https://doi.org/10.1134/S0018151X12020034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X12020034

Keywords

Navigation