Article

Entomological Review

, Volume 91, Issue 7, pp 813-819

Antimicrobial compounds from the excretions of surgical maggots, Lucilia sericata (Meigen) (Diptera, Calliphoridae)

  • A. A. KruglikovaAffiliated withSt. Petersburg State University
  • , S. I. ChernyshAffiliated withSt. Petersburg State University

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Maggots of Lucilia sericata are widely used in the therapy of infected wounds and skin ulcers. Antimicrobial materials released by the insects during their feeding period in order to suppress microbial competitors and potential pathogens play the key role both in the maggots’ survival in their natural habitats (animal corpses) and their therapeutic efficacy. Although the antimicrobial activity of the maggots’ excretion was demonstrated about a hundred years ago, little is known about the nature of its active compounds. We studied the structural characteristics and antimicrobial activities of the compounds released by L. sericata maggots into the environment. To isolate the compounds, excretion was collected from the culture of actively feeding last instar larvae, active compounds were purified using a combination of liquid chromatography and antibacterial growth inhibition assay and characterized by mass spectrometry. Two groups of antibacterial compounds were isolated from the excretion: polypeptides with molecular masses ranging from 6466 to 9025 Da and small molecules with molecular masses ranging from 130 to 700 Da. The polypeptides characterized by the masses of 8882 and 9025 Da and showing selective activity against Gram-negative bacteria correspond well to diptericins, antimicrobial peptides previously found in the hemolymph of Calliphoridae maggots and known to be part of immune response to bacterial pathogens. Other high-molecular compounds with masses 6466, 6633, 5772, and 8631 Da have no clear analogs among antimicrobial peptides present in the hemolymph. The nature of small molecules present in the excretion awaits further study. Thus, the diversity of antimicrobial compounds discovered in Lucilia excretion demonstrates a sophisticated strategy that helps the maggots to fight bacteria and other microorganisms settling their environment. The strategy combines secretion of a set of antibacterial peptides involved in insect immune response as well as molecules which function outside the host organism.