1.

Vasil’ev, S.N., A Reduction Method and Qualitative Analysis of Dynamical Systems: I, II, *Izv. Ross. Akad. Nauk Teor. Sist. Upravl.*, 2006, no. 1, pp. 21–29; no. 2, pp. 5–17.

2.

Abdullin, R.Z., Anapolsky, L.Y., Kozlov, R.I., et al., *Vector Lyapunov Functions in Stability Theory*, Atlanta, 1996.

3.

Michel, A.N., Wang, K., and Hu, B., *Qualitative Theory of Dynamical Systems. The Role of Stability-Preserving Mappings*, New York, 2001.

4.

Kozlov, R.I. and Burnosov, S.V., Asymptotic Behavior of and Estimates for the Solutions of Monotone Difference Equations, in *Metod funktsii Lyapunova v analize dinamiki sistem* (The Method of Lyapunov Functions in the Analysis of the Dynamics of Systems), Novosibirsk: Nauka, 1987, pp. 85–93.

5.

Kozlov, R.I., *Teoriya sistem sravneniya v metode vektornykh funktsii Lyapunova* (Theory of Comparison Systems in the Method of Vector Lyapunov Functions), Novosibirsk: Nauka, 2001.

6.

Bitsoris, G., Stability Analysis of Nonlinear Dynamical System,

*Internat. J. Control*, 1983, vol. 38, no. 3, pp. 699–711.

MathSciNetMATHCrossRef7.

Anapol’skii, L.Yu., The Comparison Method in the Dynamics of Discrete Systems, in *Vektor-funktsii Lyapunova i ikh postroenie* (Vector-Valued Lyapunov Functions and Their Construction), Novosibirsk: Nauka, 1980, pp. 92–128.

8.

Kozlov, R.I. and Kozlova, O.R., Investigation of the Stability of Nonlinear Continuous-Discrete Models of Economic Dynamics by the Method of Vector Lyapunov Functions. I, II, *Izv. Ross. Akad. Nauk Teor. Sist. Upravl.*, 2009, no. 2, pp. 104–113; no. 3, pp. 41–50.

9.

Dem’yanov, V.F. and Rubinov, A.M.,

*Osnovy negladkogo analiza i kvazidifferentsial’noe ischislenie* (Foundations of Nonsmooth Analysis, and Quasidifferential Calculus), Moscow: Nauka, 1990.

MATH10.

Gantmakher, F.R.,

*Teoriya matrits* (Theory of Matrices), Moscow: Nauka, 1988.

MATH11.

Voevodin, V.V. and Kuznetsov, Yu.A.,

*Matritsy i vychisleniya* (Matrices and Calculations), Moscow: Nauka, 1984.

MATH12.

Vassilyev, S.N., Kozlov, R.I., and Sivasundaram, S., Toward a Qualitative Theory of Systems with Discrete-Continuous Time and Impulsive Effects, *Proc. of ICNPAA-2000*, vol. 2, Cambridge, 2001, pp. 667–680.

13.

Vassilyev, S., Kozlov, R., Lakeyev, A., and Zherlov, A., Control Methods for Some Classes of Logical-Dynamic Systems under Uncertainties and Perturbations, *J. Hybrid Systems*, 2002, vol. 2, no. 1, pp. 87–97.

14.

Matrosov, V.M., Differential Equations and Inequalities with Discontinuous Right Hand Sides. I, II,

*Differ. Uravn.*, 1967, vol. 3, no. 3, pp. 395–409; no. 5, pp. 839–848.

MathSciNetMATH15.

Kozlov, R.I., On the Theory of Differential Equations with Discontinuous Right-Hand Sides,

*Differ. Uravn.*, 1974, vol. 10, no. 7, pp. 1264–1275.

MATH16.

Krasnosel’skii, M.A., Lifshits, E.A., and Sobolev, A.V., *Pozitivnye lineinye sistemy* (Positive Linear Systems), Moscow: Nauka, 1985.

17.

Filippov, A.V., *Differentsial’nye uravneniya s razryvnoi pravoi chast’yu* (Differential Equations with Discontinuous Right-Hand Sides), Moscow: Nauka, 1985.