Differential Equations

, Volume 48, Issue 9, pp 1236–1244

Optimal boundary control of heat transfer in a one-dimensional material: A hyperbolic model


  • R. K. Romanovskii
    • Omsk State Technical University
  • N. G. Churasheva
    • Omsk State Technical University
Control Theory

DOI: 10.1134/S0012266112090042

Cite this article as:
Romanovskii, R.K. & Churasheva, N.G. Diff Equat (2012) 48: 1236. doi:10.1134/S0012266112090042


We consider a boundary value problem describing heat propagation in a rod in the framework of a hyperbolic model of heat transfer. We construct a class, depending on a function parameter, of boundary data (controls) ensuring a given rod temperature distribution at a given time; by using the Lagrange method, from this class, we single out a unique control minimizing a given loss function.

Download to read the full article text

Copyright information

© Pleiades Publishing, Ltd. 2012