Skip to main content
Log in

Reactive thrust generated by continuous detonation in the air ejection mode

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Processes of continuous spin detonation and pulsed detonation, as well as combustion of a hydrogen-air mixture in an annular combustor 306 mm in diameter in the regime of air ejection are studied experimentally. The specific flow rates of hydrogen are 0.6–9.8 kg/(s ·m2). It is found that the greatest specific impulses of thrust generated by the combustor are reached in the case of continuous spin detonation. On the average, they are greater than the corresponding values by a factor of 1.5 in the case of burning the mixture in streamwise detonation waves, by a factor of 2 in the case of conventional combustion (by a factor of 3 at the maximum thrust impulse of 2200 m/s), and by a factor of 10 in the case of exhaustion of cold hydrogen. A change in the specific flow rate of hydrogen beginning from ≈1.2 kg/(s·m2) corresponding to the maximum thrust impulse decreases its value, and this decrease is more profound as the detonation limits in terms of the specific flow rate of hydrogen are approached. The maximum reactive thrust (83 N) is developed in the examined detonation chamber near the upper limit at the specific flow rate of hydrogen equal to 3 kg/(s·m2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. S. Zuev and V.S. Makaron, Theory of Air-Breathing and Rocket-Air-Breathing Engines (Mashinostroenie, Moscow, 1971) [in Russian].

    Google Scholar 

  2. V. K. Baev, D. Yu. Moskvichev, and A. V. Potapkin, “Control of Thrust Characteristics of a Scramjet Combustor with Vibrational Combustion Using Acoustic Resonators,” Fiz. Goreniya Vzryva 36(5), 3–6 (2000) [Combust., Expl., Shock Waves 36 (5), 553–556 (2000)].

    Google Scholar 

  3. A. V. Potapkin, V. L. Dolmatov, and A. I. Trubitsyn, “Experimental Study of Thrust Characteristics of a Model Air-Breathing Ejector-Type Combustor with Vibrational Burning of Hydrogen,” Fiz. Goreniya Vzryva 40(3), 9–13 (2004) [Combust., Expl., Shock Waves 40 (3), 258–262 (2004)].

    Google Scholar 

  4. F. A. Bykovskii, S. A. Zhdan, E. F. Vedernikov, “Continuous Detonation Combustion of Hydrogen in the Regime of Air Ejection,” in Nonequilibrium Processes: Plasma, Combustion, Atmospheric Phenomena, Ed. by G. D. Roy, S. M. Frolov, and A. M. Starik (Torus Press, Moscow, 2009), pp. 341–347.

    Google Scholar 

  5. F. A. Bykovskii, S. A. Zhdan, and E. F. Vedernikov, “Continuous Detonation in the Regime of Self-Oscillatory Ejection of the Oxidizer. 2. Air as an Oxidizer,” Fiz. Goreniya Vzryva 47(2), 102–111 (2011) [Combust., Expl., Shock Waves 47 (2), 217–225 (2011)].

    Google Scholar 

  6. F. A. Bykovskii, S. A. Zhdan, and E. F. Vedernikov, “Continuous Detonation in the Air Ejection Mode. Domain of Existence,” Fiz. Goreniya Vzryva 47(3), 92–97 (2011) [Combust., Expl., Shock Waves 47 (3), 330–334 (2011)].

    Google Scholar 

  7. G. N. Abramovich, Applied Gas Dynamics (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  8. F. A. Bykovskii and E. F. Vedernikov, “Continuous Spin Detonation of Hydrogen-Oxygen Mixtures. 3. Methods of Measuring Flow Parameters and Flow Structure in Combustors of Different Geometries,” Fiz. Goreniya Vzryva 44(4), 87–97 (2008) [Combust., Expl., Shock Waves 44 (4), 451–460 (2008)].

    Google Scholar 

  9. F. A. Bykovskii, “High-Speed Waiting Photorecorder,” Zh. Nauch. Prikl. Fotogr. Kinematogr., No. 2, 85–89 (1981).

    Google Scholar 

  10. S. A. Zhdan, F. A. Bykovskii, and E. F. Vedernikov, “Mathematical Modeling of a Rotating Detonation Wave in a Hydrogen-Oxygen Mixture,” Fiz. Goreniya Vzryva 43(4), 90–101 (2007) [Combust., Expl., Shock Waves 43 (4), 449–459 (2007)].

    Google Scholar 

  11. V. V. Zatoloka, Short-Duration Wind Tunnels (Nauka, Novosibirsk, 1986), pp. 50–58 [in Russian].

    Google Scholar 

  12. B. V. Voitsekhovskii, V. V. Mitrofanov, and M. E. Topchiyan, Structure of the Detonation Front in Gases (Izd. SO AN SSSR, Novosibirsk, 1963) [in Russian].

    Google Scholar 

  13. S. A. Zhdan, “Mathematical Model of Continuous Detonation in an Annular Combustor with a Supersonic Flow Velocity,” Fiz. Goreniya Vzryva 44(6), 83–91 (2008) [Combust., Expl., Shock Waves 44 (6), 690–697 (2008)].

    Google Scholar 

  14. B. Lewis and G. von Elbe, Combustion, Flame, and Explosions of Gases (New York, 1961).

    Google Scholar 

  15. F. A. Bykovskii, S. A. Zhdan, and E. F. Vedernikov, “Continuous Spin Detonation Wave in Fuel-Air Mixtures,” Fiz. Goreniya Vzryva 42(4), 107–115 (2006) [Combust., Expl., Shock Waves 42 (4), 463–471 (2006)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. A. Bykovskii.

Additional information

Original Russian Text © F.A. Bykovskii, S.A. Zhdan, E.F. Vedernikov.

__________

Translated from Fizika Goreniya i Vzryva, Vol. 49, No. 2, pp. 71–79, March–April, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bykovskii, F.A., Zhdan, S.A. & Vedernikov, E.F. Reactive thrust generated by continuous detonation in the air ejection mode. Combust Explos Shock Waves 49, 188–195 (2013). https://doi.org/10.1134/S0010508213020093

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508213020093

Keywords

Navigation