Skip to main content
Log in

Mitochondrial energy-dissipating systems (alternative oxidase, uncoupling proteins, and external NADH dehydrogenase) are involved in development of frost-resistance of winter wheat seedlings

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Gene expression, protein synthesis, and activities of alternative oxidase (AOX), uncoupling proteins (UCP), adenine nucleotide translocator (ANT), and non-coupled NAD(P)H dehydrogenases (NDex, NDPex, and NDin) were studied in shoots of etiolated winter wheat (Triticum aestivum L.) seedlings after exposure to hardening low positive (2°C for 7 days) and freezing (−2°C for 2 days) temperatures. The cold hardening efficiently increased frost-resistance of the seedlings and decreased the generation of reactive oxygen species (ROS) during further cold shock. Functioning of mitochondrial energy-dissipating systems can represent a mechanism responsible for the decrease in ROS under these conditions. These systems are different in their response to the action of the hardening low positive and freezing temperatures. The functioning of the first system causes induction of AOX and UCP synthesis associated with an increase in electron transfer via AOX in the mitochondrial respiratory chain and also with an increase in the sensitivity of mitochondrial non-phosphorylating respiration to linoleic and palmitic acids. The increase in electron transfer via AOX upon exposure of seedlings to hardening freezing temperature is associated with retention of a high activity of NDex. It seems that NDex but not the NDPex and NDin can play an important role in maintaining the functional state of mitochondria in heterotrophic tissues of plants under the influence of freezing temperatures. The involvement of the mitochondrial energy-dissipating systems and their possible physiological role in the adaptation of winter crops to cold and frost are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ANT:

adenine nucleotide translocator

AOX:

alternative oxidase

AP:

alternative pathway

CP:

cytochrome pathway

DTT:

dithiothreitol

FFA:

free fatty acids

NDex (NDB2):

“external” NADH:quinone oxidoreductase

NDin (NDA2):

“internal” non-coupled NADH:quinone oxidoreductase

NDPex (NDB1):

“external” NADPH:quinone oxidoreductase

PCR:

polymerase chain reaction

ROS:

reactive oxygen species

UCP:

uncoupling protein

References

  1. Skulachev, V. P., Bogachev, A. V., and Kasparinsky, F. O. (2010) Membrane Bioenergetics [in Russian], Moscow State University Publishers, Moscow.

    Google Scholar 

  2. Millenaar, F. F., and Lambers, H. (2003) Plant Biol., 5, 2–15.

    Article  CAS  Google Scholar 

  3. Vanlerberghe, G. C. (2013) Int. J. Mol. Sci., 14, 6805–6847.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Lambers, H., Robinson, A., and Ribas-Carbo, M. (2005) in Plant Respiration: From Cell to Ecosystem (Lambers, H., and Ribas-Carbo, M., eds.) Springer, Hamburg, pp. 1–15.

  5. Rasmusson, A. G., Geisler, D. A., and Moller, I. M. (2008) Mitochondrion, 8, 47–60.

    Article  CAS  PubMed  Google Scholar 

  6. Grabelnych, O. I., Pivovarova, N. Y., Pobezhimova, T. P., Kolesnichenko, A. V., and Voinikov, V. K. (2009) Fiziol. Rast., Russ. J. Plant Physiol., 56, 332–342.

    Article  Google Scholar 

  7. Voinikov, V. K. (2011) Plant Mitochondria on the Temperature Stress [in Russian], Akademicheskoe Izdatelstvo Geo, Novosibirsk.

    Google Scholar 

  8. Hourton-Cabassa, C., Matos, A. R., Zachowski, A., and Moreau, F. (2004) Plant Physiol. Biochem., 42, 283–290.

    Article  CAS  PubMed  Google Scholar 

  9. Vercesi, A. E., Borecky, J., Maia, I. G., Arruda, P., Cuccovia, I. M., and Chaimovich, H. (2006) Annu. Rev. Plant Biol., 57, 383–404.

    Article  CAS  PubMed  Google Scholar 

  10. Moller, M., and Kristensen, B. K. (2004) Photochem. Photobiol. Sci., 3, 730–735.

    Article  CAS  PubMed  Google Scholar 

  11. Grabelnych, O. I., Kolesnichenko, A. V., Pobezhimova, T. P., Zykova, V. V., and Voinikov, V. K. (2006) Russ. J. Plant Physiol., 53, 418–429.

    Article  Google Scholar 

  12. Blokhina, O., and Fagerstedt, K. V. (2010) Physiol. Plant., 138, 447–462.

    Article  CAS  PubMed  Google Scholar 

  13. Popov, V. N. (2003) Biochem. Soc. Trans., 31, 1316–1317.

    Article  CAS  PubMed  Google Scholar 

  14. Vanyushin, B. F. (2001) Usp. Biol. Khim., 41, 3–38.

    CAS  Google Scholar 

  15. Tumanov, I. I. (1979) Physiology of Hardening and Cold Resistance of Plants [in Russian], Nauka, Moscow.

    Google Scholar 

  16. Trunova, T. I. (2007) Plant and Low-Temperature Stress [in Russian], Nauka, Moscow.

    Google Scholar 

  17. Stewart, C. R., Martin, B. A., Reding, L., and Cerwick, S. (1990) Plant Physiol., 92, 761–766.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Ribas-Carbo, M., Aroca, R., Conzalez-Meler, M. A., Irigoyen, J. J., and Sanchezdiaz, M. (2000) Plant Physiol., 122, 199–204.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Takumi, S., Tomioka, M., Eto, K., Naydenov, N., and Nakamura, C. (2002) Gen. Cenet. Syst., 77, 81–88.

    Article  CAS  Google Scholar 

  20. Kurimoto, K., Millar, A. H., Lambers, H., Day, D. A., and Noguchi, K. (2004) Plant Cell Physiol., 45, 1015–1022.

    Article  CAS  PubMed  Google Scholar 

  21. Sugie, A., Naydenov, N., Mizuno, N., Nakamura, C., and Takumi, S. (2006) Gen. Genet. Syst., 81, 349–354.

    Article  CAS  Google Scholar 

  22. Matos, A. R., Hourton-Cabassa, C., Cicek, D., Reze, N., Arrabaca, J. D., Zachowski, A., and Moreau, F. (2007) Plant Cell Physiol., 48, 856–865.

    Article  CAS  PubMed  Google Scholar 

  23. Armstrong, A. F., Murray, R. B., Day, D. A., Barthet, M. M., Smith, P. M. C., Millar, A. H., Whelan, J., and Atkin, O. K. (2008) Plant Cell Environ., 31, 1156–1169.

    Article  CAS  PubMed  Google Scholar 

  24. Mizuno, N., Sugie, A., Kobayashi, F., and Takumi, S. (2008) Plant Physiol., 165, 462–467.

    Article  CAS  Google Scholar 

  25. Wang, J., Rajakulendran, N., Amirsadeghi, S., and Vanlerberghe, C. (2011) Physiol. Plant., 142, 339–351.

    Article  CAS  PubMed  Google Scholar 

  26. Li, C.-R., Liang, D.-D., Li, J., Duan, Y.-B., Li, H., Yang, Y.-C., Qin, R.-Y., Li, L., Wei, P.-C., and Yang, J.-B. (2013) Plant Cell Environ., 36, 775–788.

    Article  CAS  PubMed  Google Scholar 

  27. Shi, K., Fu, L.-J., Zhang, S., Li, X., Liao, Y.-W.-K., Xia, X.-J., Zhou, Y.-H., Wang, R.-Q., Chen, Z.-X., and Yu, J.-Q. (2013) Planta, 237, 589–601.

    Article  CAS  PubMed  Google Scholar 

  28. Grabelnych, O. I., Pobezhimova, T. P., Pavlovskaya, N. S., Koroleva, N. A., Borovik, O. A., Lyubushkina, I. V., and Voinikov, V. K. (2011) Biochemistry (Moscow), Suppl. Ser. A: Membrane Cell Biol., 5, 249–257.

    Article  Google Scholar 

  29. Murayama, S., and Handa, H. (2000) Mol. Gen. Genet., 264, 112–118.

    Article  CAS  PubMed  Google Scholar 

  30. Nogueira, F. T. S., Sassaki, F. T., and Maia, I. G. (2011) J. Bioenerg. Biomembr., 43, 71–79.

    Article  CAS  PubMed  Google Scholar 

  31. Elhavez, D., Mureha, M. W., Clifton, R., Soole, K. L., Day, D. A., and Whelan, J. (2006) Plant Cell Physiol., 47, 43–54.

    Article  Google Scholar 

  32. Lee, B., Lee, H., Xiong, L., and Zhu, J.-K. (2002) Plant Cell, 14, 1235–1251.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Kochetkov, N. K. (ed.) (1967) Methods in Carbohydrate Chemistry [Russian translation], Mir, Moscow, pp. 21–24.

    Google Scholar 

  34. Naydenov, N. G., Khanam, S. M., Atanassov, A., and Nakamura, G. (2008) Gen. Genet. Syst., 83, 31–41.

    Article  CAS  Google Scholar 

  35. Paolacci, A. R., Tanzarella, O. A., Porceddu, E., and Ciaffi, M. (2009) BMC Mol. Biol., 10, 11.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Childs, K. L., Hamilton, J. P., Zhu, W., Ly, E., Cheung, F., Wu, H., Rabinowicz, P. D., Town, C. D., Buell, C. R., and Chan, A. P. (2007) Nucleic Acids Res., 35(Database issue), D846–851.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Douce, R. (1985) Mitochondria in Higher Plants: Structure, Function and Biogenesis, Academic Press, London.

    Google Scholar 

  38. Wojtczak, L., and Schonfeld, P. (1993) Biochim. Biophys. Acta, 1183, 41–57.

    Article  CAS  PubMed  Google Scholar 

  39. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1957) J. Biol. Chem., 193, 265–275.

    Google Scholar 

  40. Svensson, A. S., and Rasmusson, A. G. (2001) Plant J., 28, 73–82.

    Article  CAS  PubMed  Google Scholar 

  41. Luethy, M. H., Horak, A., and Elthon, T. E. (1993) Plant Physiol., 101, 931–937.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Gulick, P. J., Drouin, S., Yu, Z., Danyluk, J., Poisson, G., Monroy, A. F., and Sarhan, F. (2005) Genome, 48, 913–923.

    Article  CAS  PubMed  Google Scholar 

  43. Herman, E. M., Rotter, K., Premakumar, R., Elwinger, G., Bae, R., Ehler-King, L., Chen, S., and Livingston, D. P. (2006) J. Exp. Botany, 57, 3601–3618.

    Article  CAS  Google Scholar 

  44. Vitamvas, P., Prasil, I. T., Kosova, K., Planchon, S., and Renaut, J. (2012) Proteomics, 12, 68–85.

    Article  CAS  PubMed  Google Scholar 

  45. Xu, J., Li, Y., Sun, J., Du, L., Zhang, Y., Yu, Q., and Liu, X. (2013) Plant Biol., 15, 292–303.

    Article  CAS  PubMed  Google Scholar 

  46. Tsvetanov, S., Ohno, R., Tsuda, K., Takumi, S., Mori, N., Atanassov, A., and Nakamura, C. (2000) Gen. Genet. Syst., 75, 49–57.

    Article  CAS  Google Scholar 

  47. Bartoli, C. G., Gomez, F., Martinez, D. E., and Guiamet, J. J. (2004) J. Exp. Botany, 55, 1663–1669.

    Article  CAS  Google Scholar 

  48. Nantes, I. L., Fagian, M. M., Catisti, R., Arruda, P., Maia, I. G., and Vercesi, A. E. (1999) FEBS Lett., 457, 103–106.

    Article  CAS  PubMed  Google Scholar 

  49. Calegario, F. F., Cosso, R. G., Fagian, M. M., Almeida, F. V., Jardim, W. F., Jezek, P., Arruda, P., and Vercesi, A. E. (2003) J. Bioenerg. Biomembr., 35, 211–220.

    Article  CAS  PubMed  Google Scholar 

  50. Valente, C., Pasqualim, P., Jacomasso, T., Maurer, J. B. B., de Souza, E. M., Martinez, G. R., Rocha, M. E. M., Carnieri, E. G. S., and Cadena, S. M. S. C. (2012) Plant Sci., 197, 84–91.

    Article  CAS  PubMed  Google Scholar 

  51. Hashimoto, H., Nishi, R., Umeda, M., Ichimiya, H., and Kato, A. (1993) Plant Mol. Biol., 22, 163–164.

    Article  CAS  PubMed  Google Scholar 

  52. De Santis, A., Landi, P., and Genchi, G. (1999) Plant Physiol., 119, 743–754.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Popov, V. N., Markova, O. V., Mokhova, E. N., and Skulachev, V. P. (2002) Biochim. Biophys. Acta, 1553, 232–237.

    Article  CAS  PubMed  Google Scholar 

  54. Svensson, A. S., Johansson, F. I., Moller, I. M., and Rasmusson, A. G. (2002) FEBS Lett., 517, 79–82.

    Article  CAS  PubMed  Google Scholar 

  55. Brunton, C. J., and Palmer, J. M. (1973) Eur. J. Biochem., 39, 283–291.

    Article  CAS  PubMed  Google Scholar 

  56. Moghadam, A. A., Taghavi, S. M., Niazi, A., Djavaheri, M., and Ebrahimie, E. (2012) Genet. Mol. Res., 11, 3547–3567.

    Article  CAS  PubMed  Google Scholar 

  57. Pineau, B., Mathieu, C., Gerard-Hirne, C., De Paepe, R., and Chetrit, P. (2005) J. Biol. Chem., 280, 25994–26001.

    Article  CAS  PubMed  Google Scholar 

  58. Abdrakhimova, I. P., Andreev, I. M., and Shugaev, A. G. (2011) Russ. J. Plant Physiol., 58, 567–574.

    Article  CAS  Google Scholar 

  59. Pastore, D., Trono, D., Laus, M. N., Di Fonzo, N., and Passarella, S. (2001) Plant Cell Physiol., 42, 1373–1382.

    Article  CAS  PubMed  Google Scholar 

  60. Michalecka, A. M., Svensson, A. S., Johansson, F. I., Agius, S. C., Johanson, U., Brennicke, A., Binder, S., and Rasmusson, A. G. (2003) Plant Physiol., 133, 642–652.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Stupnikova, I., Benamar, A., Tolleter, D., Grelet, J., Borovskii, G., Dorne, A. J., and Macherel, D. (2006) Plant Physiol., 140, 326–335.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Nariichuk, F. D., and Babenko, V. I. (1981) Fiziol. Biokhim. Kul’t. Rast., 13, 582–586.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Grabelnych.

Additional information

Original Russian Text © O. I. Grabelnych, O. A. Borovik, E. L. Tauson, T. P. Pobezhimova, A. I. Katyshev, N. S. Pavlovskaya, N. A. Koroleva, I. V. Lyubushkina, V. Yu. Bashmakov, V. N. Popov, G. B. Borovskii, V. K. Voinikov, 2014, published in Biokhimiya, 2014, Vol. 79, No. 6, pp. 645–660.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM13-235, February 23, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grabelnych, O.I., Borovik, O.A., Tauson, E.L. et al. Mitochondrial energy-dissipating systems (alternative oxidase, uncoupling proteins, and external NADH dehydrogenase) are involved in development of frost-resistance of winter wheat seedlings. Biochemistry Moscow 79, 506–519 (2014). https://doi.org/10.1134/S0006297914060030

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297914060030

Key words

Navigation