Skip to main content
Log in

Robust stability of a class of positive quasi-polynomials in Banach spaces

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

In this paper, we study the stability radii of positive quasipolynomials associated with linear functional difference equations in infinite-dimensional spaces. It is shown that the positive, real and complex stability radii coincide. Moreover, explicit formulas are derived for these stability radii and illustrated by a simple example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Fischer, “Stability radii of infinite-dimensional positive systems,” Math. Control Signals Systems 10(3), 223–236 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Hinrichsen and A. J. Pritchard, Mathematical Systems Theory, Vol. 1, in Modelling, State Space Analysis, Stability and Robustness, Texts Appl. Math. (Springer-Verlag, Berlin, 2005), Vol. 48.

    Google Scholar 

  3. B. T. Anh and N. K. Son, “Stability radii of positive higher order difference system in infinite-dimensional spaces,” Systems Control Lett. 57(10), 822–827 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  4. B. T. Anh, N. K. Son, and D. D. X. Thanh, “Stability radii of delay difference systems under affine parameter perturbations in infinite-dimensional spaces,” Appl. Math. Comput. 202(2), 562–570 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  5. B. T. Anh and N. K. Son, “Stability radii of positive linear systems under affine parameter perturbations in infinite-dimensional spaces,” Positivity 12(4), 677–690 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  6. B. T. Anh, N. K. Son, and D. D. X. Thanh, “Robust stability of Metzler operator and delay equation in L p([−h, 0];X),” Vietnam J. Math. 34(3), 357–368 (2006).

    MathSciNet  MATH  Google Scholar 

  7. A. V. Bulatov and F. Daimond, “Real structural stability radius of infinite-dimensional linear systems: Its estimate,” Avtomat. i Telemekh., No. 5, 24–33 (2002) [Autom. Remote Control 63 (5), 713–722 (2002)].

  8. N. A. Bobylev and A. V. Bulatov, “A bound on the real stability radius of continuous-time linear infinite-dimensional systems,” in Computational Mathematics and Modeling (Fizmatlit, Moscow, 2001), Vol. 1, pp. 77–86 [in Russian].

    Google Scholar 

  9. S. Clark, Yu. Latushkin, S. Montgomery-Smith, and T. Randolph, “Stability radius and internal versus external stability in Banach spaces: an evolution semigroup approach,” SIAM J. Control Optim. 38(6), 1757–1793 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Hinrichsen and A. J. Pritchard, “Robust stability of linear evolution operators on Banach spaces,” SIAM J. Control Optim. 32(6), 1503–1541 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Hinrichsen and A. J. Pritchard, “Stability radii of linear systems,” Systems Control Lett. 7(1), 1–10 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Adimy and K. Ezzinbi, “Local existence and linearized stability for partial functional-differential equations,” Dynam. Systems Appl. 7(3), 389–403 (1998).

    MathSciNet  MATH  Google Scholar 

  13. M. Adimy and K. Ezzinbi, “A class of linear partial neutral functional-differential equations with nondense domain,” J. Differential Equations 147(2), 285–332 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  14. J. K. Hale, Functional Differential Equations, in Appl. Math. Sci. (Springer-Verlag, New York, 1971), Vol. 3.

    Google Scholar 

  15. J. K. Hale and S. M. Verduyn Lunel, “Strong stabilization of neutral functional differential equations,” IMA J.Math. Control Inform. 19(1–2), 5–23 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  16. O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H.-O. Walther, Delay Equations. Functional-, Complex-, and Nonlinear Analysis, in Appl. Math. Sci. (Springer-Verlag, Berlin, 1995), Vol. 110.

    Google Scholar 

  17. W. Michiels and T. Vyhlídal, “An eigenvalue based approach for the stabilization of linear time-delay systems of neutral type,” Automatica J. IFAC 41(6), 991–998 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  18. H. H. Schaefer, Banach Lattices and Positive Operators, in Grundlehren Math. Wiss. (Springer-Verlag, Berlin, 1974), Vol. 215.

    MATH  Google Scholar 

  19. P. Meyer-Nieberg, Banach Lattices, in Universitext (Springer-Verlag, Berlin, 1991).

    Google Scholar 

  20. A. C. Zaanen, Introduction to Operator Theory in Riesz Spaces (Springer-Verlag, Berlin, 1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bui The Anh.

Additional information

Published in Russian in Matematicheskie Zametki, 2010, Vol. 88, No. 5, pp. 651–661.

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anh, B.T., Son, N.K. Robust stability of a class of positive quasi-polynomials in Banach spaces. Math Notes 88, 626–636 (2010). https://doi.org/10.1134/S0001434610110027

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434610110027

Keywords

Navigation