Skip to main content
Log in

Nonlinear properties of phototropic media on the basis of CuxSe nanoparticles in quartz glass

  • Low-Dimensional Systems
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Energy and kinetic characteristics of theinduced transparency in quartz sol-gel glasses containing copper selenide nanoparticles of different stoichiometry are studied. The dependence of the nonlinear optical properties of the glass samples on the chemical composition of copper selenide particles, which gives rise to an additional absorption band in the near-infrared region and determines its spectral position, is established. It is found that the time of relaxation of the induced transparency increases and the peak absorption cross section decreases as the absorption maximum shifts to the low-energy spectral region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. V. Gaponenko, Optical Properties of Semiconductor Nanocrystals (Cambridge Univ. Press, Cambridge, 1998).

    Google Scholar 

  2. A. D. Yoffe, Adv. Phys. 42, 173 (1993); Adv. Phys. 50, 1 (2001).

    Article  ADS  Google Scholar 

  3. Nanomaterials: Synthesis, Properties and Applications, Ed. by A. S. Edelstein and R. C. Cammarata (Inst. of Physics, Bristol, 1996).

    Google Scholar 

  4. C. N. R. Rao, J. Mater. Chem. 9(1), 1 (1999).

    Article  MATH  Google Scholar 

  5. U. Woggon, Optical Properties of Semiconductor Quantum Dots (Springer, Berlin, 1998).

    Google Scholar 

  6. G. T. Perovskii, A. A. Zhilin, V. S. Shashkin, and A. A. Onushchenko, Opt. Zh. 65(12), 29 (1998) [J. Opt. Tech. 65, 974 (1998)].

    Google Scholar 

  7. V. V. Gorbachev, I–IV Semiconductor Compounds (Metallurgiya, Moscow, 1980).

    Google Scholar 

  8. A. A. Babitsyna, T. A. Emel’yanova, M. A. Chernitsyna, and V. T. Kalinnikov, Zh. Neorg. Khim. 20, 3093 (1975).

    Google Scholar 

  9. R. M. Murray and R. D. Heyding, Can. J. Chem. 53, 878 (1975); Can. J. Chem. 54, 841 (1976).

    Google Scholar 

  10. R. D. Heyding, Can. J. Chem. 44, 1233 (1966).

    Google Scholar 

  11. Z. Vucic, O. Milat, V. Horvatic, and Z. Ogorelec, Phys. Rev. B 24, 5398 (1981).

    ADS  Google Scholar 

  12. Z. Ogorelec and B. Celustka, J. Phys. Chem. Solids 30, 149 (1969).

    Google Scholar 

  13. K. L. Chopra and S. R. Das, Thin Film Solar Cells (Plenum, New York, 1983; Mir, Moscow, 1986).

    Google Scholar 

  14. H. Ueda, M. Nohara, K. Kitazawa, et al., Phys. Rev. B 65, 155104 (2002).

  15. Y. Cheng, T. J. Emge, and J. G. Brennan, Inorg. Chem. 35, 7339 (1996).

    Google Scholar 

  16. V. V. Gorbachev, Neorg. Mater. 28, 2310 (1992).

    Google Scholar 

  17. G. P. Sorokin, Yu. M. Papshev, and P. T. Oush, Fiz. Tverd. Tela (Leningrad) 7, 2244 (1965) [Sov. Phys. Solid State 7, 1810 (1965)].

    Google Scholar 

  18. G. B. Abdullaev, A. N. Aliyarova, and G. A. Asadov, Phys. Status Solidi 21, 461 (1967).

    Google Scholar 

  19. K. C. Sharma, R. P. Sharma, and J. C. Garg, Indian J. Pure Appl. Phys. 28, 590 (1990).

    Google Scholar 

  20. B. Vengalis, L. Valatska, N. Shiktorov, and A. Yukna, Lit. Fiz. Sb. 27, 561 (1987).

    Google Scholar 

  21. Sh. Xu, H. Wang, J.-J. Zhu, and H.-Y. Chen, J. Cryst. Growth 234, 263 (2002).

    Google Scholar 

  22. W. Wang, Y. Geng, P. Yan, et al., J. Am. Chem. Soc. 121, 4062 (1999).

    Google Scholar 

  23. J. Zhy, O. Oalchik, S. Chen, and A. Gedanken, J. Phys. Chem. B 104, 7344 (2000).

    Google Scholar 

  24. K. V. Yumashev, A. M. Malyarevich, P. V. Prokoshin, et al., Appl. Phys. B 65, 545 (1997).

    Article  ADS  Google Scholar 

  25. K. V. Yumashev, N. N. Posnov, I. A. Denisov, et al., J. Opt. Soc. Am. B 17, 572 (2000).

    ADS  Google Scholar 

  26. K. V. Yumashev, V. S. Gurin, P. V. Prokoshin, et al., Phys. Status Solidi B 224, 815 (2001).

    ADS  Google Scholar 

  27. V. S. Gurin, V. B. Prokopenko, A. A. Alexeenko, et al., Int. J. Inorg. Mater. 3, 493 (2001).

    Article  Google Scholar 

  28. V. S. Gurin, V. B. Prokopenko, A. A. Alexeenko, et al., Mater. Sci. Eng. C 15, 93 (2001).

    Article  Google Scholar 

  29. V. S. Gurin, V. B. Prokopenko, A. A. Alexeenko, and A. V. Frantskevich, J. Mater. Chem. 11, 149 (2001).

    Article  Google Scholar 

  30. K. V. Yumashev, I. A. Denisov, N. N. Posnov, et al., Appl. Phys. B 70, 179 (2000).

    Article  ADS  Google Scholar 

  31. V. V. Sobolev and V. V. Nemoshkalenko, Methods of Computational Physics in the Theory of Solids. Electronic Structure of Semiconductors (Naukova Dumka, Kiev, 1988).

    Google Scholar 

  32. W. Rudolph and H. Weber, Opt. Commun. 34, 491 (1980).

    Article  ADS  Google Scholar 

  33. G. Tamulaitis, V. Gulbinas, G. Kodis, et al., J. Appl. Phys. 88, 178 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 38, No. 7, 2004, pp. 846–851.

Original Russian Text Copyright © 2004 by Zolotovskaya, Posnov, Prokosin, Yumashev, Gurin, Alexeenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zolotovskaya, S.A., Posnov, N.N., Prokosin, P.V. et al. Nonlinear properties of phototropic media on the basis of CuxSe nanoparticles in quartz glass. Semiconductors 38, 812–817 (2004). https://doi.org/10.1134/1.1777606

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1777606

Keywords

Navigation