, Volume 43, Issue 12, pp 2284-2289

Phase and structural transformations in a molecular dynamics model of iron under ultrafast heating and cooling

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

It is shown that a system of classical particles considered in a molecular dynamics model with Pak-Doyama pairwise interatomic potential adequately describes not only the various structural states of iron (melt, bcc crystal, metal glass) but also the complex self-organization processes occurring in first-and second-order phase transitions (crystallization and vitrification, respectively). When the temperature is varied at a constant rate of 6.6×1011 K/s, crystallization sets in from both the amorphous and the liquid state; at a rate of 1.9×1012 K/s, crystallization is observed only in the amorphous state; and when heated at a rate of 4.4×1012 K/s, the model amorphous iron transfers to the liquid state without crystallization. The energy of homogeneous formation of a crystal nucleus in the bulk of the amorphous phase of iron is calculated to be ∼0.71 eV under the assumption that there is a spectrum of activation energies.

__________
Translated from Fizika Tverdogo Tela, Vol. 43, No. 12, 2001, pp. 2192–2197.
Original Russian Text Copyright © 2001 by Evteev, Kosilov, Milenin.