Skip to main content
Log in

Application of the models of the middle and upper atmosphere to simulation of total electron content perturbations caused by the 2009 stratospheric warming

  • Chemical Physics of Atmospheric Phenomena
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Sudden stratospheric warming (SSW) is a unique atmospheric phenomenon, which consists in a rapid rise of temperature at altitudes of ~30–40 km in high latitudes of the winter, typically, northern hemisphere. Modeling SSW effects in the mesosphere, thermosphere, and ionosphere is a challenging problem, because it must be done on a global scale, with consideration of numerous physical and chemical processes. This paper reports the results of calculations of the characteristics of total electron content (TEC) perturbations for the conditions of the SSW event in January 2009. The calculations are performed using the Global Self-Consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP) supplemented by the lower boundary conditions in the form of space–time distributions of the basic parameters of the mesosphere at an altitude of 80 km, as calculated by the SOCOL, KASIMA, and TIME GCM models. The simulation results show that, for some versions, the spatial distribution of total electron content disturbances ΔTEC shows a qualitative agreement with experimental data; however, the values of ΔTEC in all variants of calculations proved to be an order of magnitude lower than the measured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. D. Danilov, E. S. Kazimirovskii, G. V. Vergasova, and G. Ya. Khachikyan, Meteorological Effects in the Ionosphere (Gidrometeoizdat, Leningrad, 1987) [in Russian].

    Google Scholar 

  2. J. L. Chau, L. P. Goncharenko, B. G. Fejer, and H. L. Liu, Space Sci. Rev. (2011). doi: 10.1007/s11214-011-9797-5

    Google Scholar 

  3. A. O’Neill, Encyclopedia of Atmospheric Sciences (Elsevier Science, San Diego, 2003), p. 1342.

    Book  Google Scholar 

  4. R. A. Walterscheid, G. G. Sivijee, and R. G. Roble, Geophys. Rev. Lett. 27, 2897 (2000).

    Article  CAS  Google Scholar 

  5. P. Hoffmann, W. Singer, D. Keuer, et al., J. Atmosph. Sol.-Terr. Phys. 69, 2355 (2007).

    Article  Google Scholar 

  6. D. E. Siskind, L. Coy, and P. Espy, Geophys. Rev. Lett. 32, L09804 (2005). doi: 10.1029/2005GL022399

    Article  Google Scholar 

  7. L. P. Goncharenko and S. R. Zhang, Geophys. Rev. Lett. 35, L21103 (2008). doi: 10.1029/2008GL035684

    Article  Google Scholar 

  8. L. P. Goncharenko, A. J. Coster, J. L. Chau, and C. E. Vallandares, J. Geophys. Res. 115, A00G07 (2010). doi: 10.1029/2010JA015400

    Google Scholar 

  9. L. P. Goncharenko, J. L. Chau, H.-L. Liu, and A. J. Coster, Geophys. Rev. Lett. 37, L10101 (2010). doi: 10.1029/2010GL043125

    Article  Google Scholar 

  10. D. Pancheva, N. Mitchell, R. R. Clark, J. Drobjeva, and J. Lastovicka, Ann. Geophys. 20, 1807 (2002).

    Article  Google Scholar 

  11. D. Pancheva and P. Mukhtarov, J. Atmosph. Sol.-Terr. Phys. 73, 1697 (2011). doi: 10.1016/j.jastp.2011.03.006

    Article  Google Scholar 

  12. D. Altadill, E. M. Apostolov, J. G. Sole, and C. Jacobi, Phys. Chem. Earth, Part C 26, 387 (2001).

    Google Scholar 

  13. A. D. Danilov and L. B. Vanina, Int. J. Geomagn. Aeron. 4, 237 (2004).

    Google Scholar 

  14. H. L. Liu and R. G. Roble, J. Geophys. Res. D 107, 4695 (2002). doi: 10.1029/2001JD001533

    Google Scholar 

  15. H.-L. Liu and R. G. Roble, Geophys. Rev. Lett. 32, L13804 (2005). doi: 10.1029/2005GL022939

    Article  Google Scholar 

  16. H.-L. Liu, W. Wang, A. D. Richmond, and R. G. Roble, J. Geophys. Res. 115, A00G07–1 (2010). doi: 10.1029/ 2009JA015188

    Google Scholar 

  17. T. Fuller-Rowell, H. Wang, R. Akmaev, et al., Geophys. Rev. Lett. 38, L13102 (2011). doi: 10.1029/2009JA015188

    Google Scholar 

  18. T. Fuller-Rowell, F. Wu, R. Akmaev, T. W. Fang, and E. Araujo-Pradere, J. Geophys. Res. 115, A00G08 (2010). doi: 10.1029/2010JA015524

    Google Scholar 

  19. H. Jin, Y. Miyoshi, D. Pancheva, et al., J. Geophys. Res. A 117, 10323 (2012). doi: 10.1029/2012JA017650

    Google Scholar 

  20. J. Lastovicka, J. Atmosph. Sol.-Terr. Phys. 64, 697 (2002).

    Article  Google Scholar 

  21. J. Lilensten and P. L. Blelly, J. Atmosph. Sol.-Terr. Phys. 64, 775 (2002).

    Article  Google Scholar 

  22. J. L. Chau, N. A. Aponte, E. Cabossa, et al., J. Geophys. Res. 115, A00G06 (2010). doi: 10.1029/2010JA015378

    Google Scholar 

  23. X. Yue, W. S. Schreiner, J. Lei, et al., J. Geophys. Res. 115, A00G09 (2010). doi: 10.1029/2010JA015466

    Google Scholar 

  24. F. S. Bessarab, Yu. N. Korenkov, M. V. Klimenko, V. V. Klimenko, et al., J. Atmosph. Sol.-Terr. Phys. 90–91, 77 (2012). doi: 10.1016/j.jastp.2012.09.005

    Article  Google Scholar 

  25. Y. N. Korenkov, V. V. Klimenko, M. V. Klimenko, F. S. Bessarab, et al., J. Geophys. Res. A 117, 10309 (2012). doi: 10.1029/2012JA018018

    Google Scholar 

  26. T. Egorova, E. Rozanov, V. Zubov, et al., Atmosph. Chem. Phys. 5, 1557 (2005).

    Article  CAS  Google Scholar 

  27. W. Kouker, D. Offermann, V. Kull, et al., J. Geophys. Res.: Atmos. 104, 16405 (1999).

    Article  CAS  Google Scholar 

  28. A. A. Namgaladze, Yu. N. Korenkov, V. V. Klimenko, I. V. Karpov, F. S. Bessarab, et al., Pure Appl. Geophys. 127, 219 (1988).

    Article  CAS  Google Scholar 

  29. A. A. Namgaladze, Yu. N. Koren’kov, V. V. Klimenko, I. V. Karpov, F. S. Bessarab, et al., Geomagn. Aeron. 30, 612 (1990).

    Google Scholar 

  30. V. V. Klimenko, M. V. Klimenko, and V. V. Bryukhanov, Mat. Model. 18 (3), 77 (2006).

    Google Scholar 

  31. M. V. Klimenko, V. V. Klimenko, and V. V. Bryukhanov, Geomagn. Aeron. 46, 457 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Klimenko.

Additional information

Original Russian Text © M.V. Klimenko, V.V. Klimenko, F.S. Bessarab, Yu.N. Korenkov, E.V. Rozanov, T. Reddmann, I.E. Zakharenkova, M.V. Tolstikov, 2016, published in Khimicheskaya Fizika, 2016, Vol. 35, No. 1, pp. 41–48.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klimenko, M.V., Klimenko, V.V., Bessarab, F.S. et al. Application of the models of the middle and upper atmosphere to simulation of total electron content perturbations caused by the 2009 stratospheric warming. Russ. J. Phys. Chem. B 10, 109–116 (2016). https://doi.org/10.1134/S1990793116010097

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793116010097

Keywords

Navigation