Skip to main content
Log in

Mechanisms of inelastic scattering of low-energy protons by C6H6, C60, C6F12, and C60F48 molecules

  • Fullerenes and Atomic Clusters
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The mechanisms of inelastic scattering of low-energy protons with a kinetic energy of 2–7 eV by C6H6, C6F12, C60, and C60F48 molecules are studied using the methods of quantum chemistry and nonempirical molecular dynamics. It is shown that, for the C6H6 + proton and C60 + proton systems, starting from a distance of 6 Å from the carbon skeleton, the electronic charge transfer from the aromatic molecule to H+ occurs with a probability close to unity and transforms the H+ ion into a hydrogen atom and the neutral C6H6 and C60 molecules into cation radicals. The mechanism of interaction of low-energy protons with C6F12 and C60F48 molecules has a substantially different character and can be considered qualitatively as the interaction between a neutral molecule and a point charge. The Coulomb perturbation of the system arising from the interaction of the noncompensated proton charge with the Mulliken charges of fluorine atoms results in an inversion of the energies of the electronic states localized, on the one hand, on the positively charged hydrogen ion and, on the other hand, on the C6F12 and C60F48 molecules. As a result, the neutral molecule + proton state becomes the ground state. In turn, this inversion makes the electronic charge transfer energetically unfavorable. Quantum-chemical and molecular-dynamics calculations on different levels of theory showed that, for fluorine derivatives of some aromatic structures (C6F12, C60F48), the barriers to proton penetration through carbon hexagons are two to four times lower than for the corresponding parent systems (C6H6, C60). This effect is explained by the absence of active π-electrons in the case of fluorinated molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. R. Heath, S. C. O’Brien, Q. Zhang, Y. Liu, R. F. Curl, H. W. Kroto, F. K. Tittel, and R. E. Smalley, J. Am. Chem. Soc. 107, 7779 (1985).

    Article  Google Scholar 

  2. Y. Chai, T. Guo, C. Jin, R. E. Haufler, L. P. F. Chibante, J. Fure, L. Wang, J. M. Alford, and R. E. Smalley, J. Phys. Chem. 95, 7564 (1991).

    Article  Google Scholar 

  3. M. Saunders, H. A. Jimenez-Vazquez, R. J. Cross, and R. J. Poreda, Science (Washington) 259, 1428 (1993); F. Hensel and P. Edwards, Science (Washington) 271, 1693 (1996).

    ADS  Google Scholar 

  4. J. J. Christian, Z. Wan, and S. L. Anderson, Chem. Phys. Lett. 199, 373-8 (1992).

    Google Scholar 

  5. T. A. Murphy, T. Pawlik, A. Weidinger, M. Höhne, R. Alcala, and J. M. Spaeth, Phys. Rev. Lett. 77, 1075 (1996).

    ADS  Google Scholar 

  6. E. E. B. Campbell, R. Tellgmann, N. Krawez, and I. V. Hertel, J. Phys. Chem. Solids 58, 1763 (1997).

    Google Scholar 

  7. T. Ohtsuki, K. Ohno, K. Shiga, Y. Kawazoe, Y. Maruyama, and K. Masumoto, Phys. Rev. Lett. 81, 967 (1998).

    Article  ADS  Google Scholar 

  8. D. S. Bethune, R. D. Johnson, J. R. Salem, M. S. de Vries, and C. M. Yannoni, Nature (London) 366, 123 (1993).

    Article  ADS  Google Scholar 

  9. S. K. Estreicher, C. D. Lathan, M. I. Heiggie, R. Jones, and S. Öberg, Chem. Phys. Lett. 196, 311 (1992).

    Article  ADS  Google Scholar 

  10. K. C. Mowrey, M. M. Ross, and J. H. Callahan, J. Phys. Chem. 96, 4755 (1992).

    Article  Google Scholar 

  11. M. Kolb and W. Thiel, J. Comput. Chem. 14, 37 (1993).

    Google Scholar 

  12. J. Hruŝak, D. K. Böhme, T. Weiske, and H. Schwarz, Chem. Phys. Lett. 193, 97 (1992).

    ADS  Google Scholar 

  13. K. Ohno, Y. Maruyama, K. Esfarjani, and Y. Kawazoe, Phys. Rev. Lett. 76, 3590 (1996).

    Article  ADS  Google Scholar 

  14. R. Mitsumoto, T. Araki, E. Ito, Y. Ouchi, K. Seki, K. Kikuchi, Y. Achiba, H. Kurosaki, T. Sonoda, H. Kobayashi, O. V. Boltalina, V. K. Pavlovich, L. N. Sidorov, Y. Hattori, N. Liu, S. Yajima, S. Kawasaki, F. Okino, and H. Touhara, J. Phys. Chem. A 102, 552 (1998).

    Article  Google Scholar 

  15. L. G. Bulusheva, A. V. Okotrub, and O. V. Boltalina, J. Phys. Chem. A 103, 9921 (1999).

    Article  Google Scholar 

  16. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. J. A. Montgomery, K. N. Kudin, J. C. Burant, J. M. Millam, R. E. Stratmann, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, S. Iyengar, G. A. Petersson, M. Ehara, K. Toyota, H. Nakatsuji, C. Adamo, J. Jaramillo, R. Cammi, C. Pomelli, J. Ochterski, P. Y. Ayala, K. Morokuma, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, GAUSSIAN 01: Development Version (Revision B.01) (Gaussian Inc., Pittsburgh, PA, 2001).

    Google Scholar 

  17. W. Andreoni, Annu. Rev. Phys. Chem. 49, 405 (1998).

    Article  Google Scholar 

  18. K. Hedberg, L. Hedberg, D. S. Bethune, C. A. Brown, M. S. de Vries, and R. D. Johnson, Science (Washington) 254, 410 (1991).

    ADS  Google Scholar 

  19. R. Car and M. Parinello, Phys. Rev. Lett. 55 (22), 2471 (1985).

    Article  ADS  Google Scholar 

  20. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1974; Pergamon, New York, 1977).

    Google Scholar 

  21. J. H. Weaver, Acc. Chem. Res. 25, 143 (1992).

    Article  Google Scholar 

  22. S. A. Varganov, P. V. Avramov, and S. G. Ovchinnikov, Fiz. Tverd. Tela (St. Petersburg) 42, 2103 (2000) [Phys. Solid State 42, 2168 (2000)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avramov, P.V., Yakobson, B.I. & Scuseria, G.E. Mechanisms of inelastic scattering of low-energy protons by C6H6, C60, C6F12, and C60F48 molecules. Phys. Solid State 48, 177–184 (2006). https://doi.org/10.1134/S106378340601032X

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378340601032X

PACS numbers

Navigation