Skip to main content
Log in

Two-component structure of the current pulse of a ranaway electron beam generated during electric breakdown of elevated-pressure nitrogen

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Conditions are investigated at which two current pulses of ranaway electron beams are generated in elevated-pressure nitrogen during one voltage pulse. It is shown that the regime with two runaway electron beam current pulses takes place at decreased values of the electric field strength E in the gap (or decreased values of the parameter E/p, where p is the gas pressure). The regime with two runaway electron beam current pulses is observed both at high (1500–3000 Torr) and low (below 100 Torr) pressures. It is shown that, for the second runaway electron beam current pulse to form, the voltage across the gap should be partially reduced during the first pulse. At low nitrogen pressures (~10 Torr), the regime in which two runaway electron beams are generated can be implemented by increasing the breakdown strength of the gap and/or increasing the value of E/p. In experiments carried out in atmospheric-pressure air with a picosecond time resolution, a rather complicated structure of the beam current pulse is observed at a voltage rise time of ~300 ps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. V. Tarasova, L. N. Khudyakova, T. V. Loiko, and V. A. Tsukerman, Sov. Phys. Tech. Phys. 19, 351 (1974).

    ADS  Google Scholar 

  2. L. P. Babich, T. V. Loiko, and V. A. Tsukerman, Sov. Phys. Usp. 33, 521 (1990).

    Article  ADS  Google Scholar 

  3. V. F. Tarasenko and S. I. Yakovlenko, Phys. Usp. 47, 887 (2004).

    Article  ADS  Google Scholar 

  4. V. F. Tarasenko, E. K. Baksht, A. G. Burachenko, et al., Plasma Devices Oper. 16, 267 (2008).

    Article  Google Scholar 

  5. L. M. Vasilyak, S. V. Kostyuchenko, N. N. Kudryavtsev, and I. V. Filigin, Phys. Usp. 37, 247 (1994).

    Article  ADS  Google Scholar 

  6. N. B. Anikin, S. A. Bozhenkov, D. V. Zatsepin, et al., in Encyclopedia of Low-Temperature Plasma, Vol. VIII-1: Chemistry of Low-Temperature Plasma, Ed. by Yu. A. Lebedev, N. A. Plate, and V. E. Fortov (Yanus-K, Moscow, 2005), p. 131 [in Russian].

    Google Scholar 

  7. E. K. Baksht, A. G. Burachenko, V. Yu. Kozhevnikov, et al., J. Phys. D 43, 305201 (2010).

    Article  Google Scholar 

  8. L. P. Babich and T. V. Loiko, Plasma Phys. Rep. 36, 263 (2010).

    Article  ADS  Google Scholar 

  9. V. F. Tarasenko, Plasma Phys. Rep. 37, 409 (2011).

    Article  ADS  Google Scholar 

  10. S. Yatom, V. Vekselman, J. Z. Gleizer, and Ya. E. Krasik, J. Appl. Phys. 109, 073312 (2011).

    Article  ADS  Google Scholar 

  11. T. Shao, C. Zhang, Z. Niu, P. Yan, et al., Appl. Phys. Lett. 98, 021503 (2011).

    Article  ADS  Google Scholar 

  12. S. Yatom, J. Z. Gleizer, D. Levko, et al., Europhys. Lett. 96, 65001 (2011).

    Article  ADS  Google Scholar 

  13. A. V. Gurevich, G. A. Mesyats, K. P. Zybin, et al., Phys. Lett. A 375, 2845 (2011).

    Article  ADS  Google Scholar 

  14. I. D. Kostyrya, D. V. Rybka, and V. F. Tarasenko, Prib. Tekh. Eksp., Instrum. Exp. Tech. 55, 72 (2012).

    Article  Google Scholar 

  15. E. Kh. Baksht, V. F. Tarasenko, M. I. Lomaev, and D. V. Rybka, Tech. Phys. Lett. 33, 373 (2007).

    Article  ADS  Google Scholar 

  16. E. Kh. Baksht, V. F. Tarasenko, M. I. Lomaev, et al., Laser Phys. 17, 1124 (2007).

    Article  ADS  Google Scholar 

  17. M. V. Erofeev, I. D. Kostyrya, and V. F. Tarasenko, Tech. Phys. 52, 1291 (2007).

    Article  Google Scholar 

  18. E. Kh. Baksht, A. G. Burachenko, M. I. Lomaev, et al., Tech. Phys. 53, 93 (2008).

    Article  Google Scholar 

  19. J. R. Dwyer, Z. Saleh, H. K. Rassoul, et al., J. Geophys. Res. 113, D23207 (2008).

    Article  ADS  Google Scholar 

  20. E. Kh. Baksht, E. V. Balzovskii, A. I. Klimov, et al., Instrum. Exp. Tech. 50, 811 (2007).

    Article  Google Scholar 

  21. F. Ya. Zagulov, A. S. Kotov, V. G. Shpak, et al., Prib. Tekhn. Eksp., No. 2, 146 (1989).

  22. V. F. Tarasenko, E. K. Baksht, A. G. Burachenko, et al., IEEE Trans. Plasma Sci. 38, 2583 (2010).

    Article  Google Scholar 

  23. S. I. Yakovlenko, Laser Phys. 16, 403 (2006).

    Article  ADS  Google Scholar 

  24. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987; Springer-Verlag, Berlin, 1991).

    Google Scholar 

  25. G. A. Askar’yan, Tr. FIAN 66, 66 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Tarasenko.

Additional information

Original Russian Text © V.F. Tarasenko, M.V. Erofeev, M.I. Lomaev, D.A. Sorokin, D.V. Rybka, 2012, published in Fizika Plazmy, 2012, Vol. 38, No. 11, pp. 1001–1008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarasenko, V.F., Erofeev, M.V., Lomaev, M.I. et al. Two-component structure of the current pulse of a ranaway electron beam generated during electric breakdown of elevated-pressure nitrogen. Plasma Phys. Rep. 38, 922–929 (2012). https://doi.org/10.1134/S1063780X12100108

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X12100108

Keywords

Navigation