Skip to main content
Log in

Accelerated electrons and hard X-ray emission from X-pinches

  • Plasma Dynamics
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The generation of accelerated electrons in the X-pinch minidiode is studied experimentally. It is well known that the explosion of an X-pinch consisting of two or more wires is accompanied by the formation of a minidiode, in which electrons are accelerated. The subsequent slowing down of electrons in the products of wire explosion causes the generation of hard X-ray (HXR) emission with photon energies higher than 10 keV. In this work, the spatial and temporal characteristics of X-pinch HXR emission are studied, the specific features of HXR generation are discussed, and the capability of applying this radiation to point-projection X-ray imaging of various plasma and biological objects is considered. The parameters of the electron beam produced in the X-pinch are measured using a Faraday cup and X-ray diagnostics. The experiments were performed with the XP generator (550 kA, 100 ns) at Cornell University (United States) and the BIN generator (270 kA, 150 ns) at the Lebedev Physical Institute (Russia).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

S. A. Pikuz, T. A. Shelkovenko & D. A. Hammer

S. A. Pikuz, T. A. Shelkovenko & D. A. Hammer

References

  1. S. M. Zakharov, G. V. Ivanenkov, A. A. Kolomenskiĭ, et al., Pis’ma Zh. Tekh. Fiz. 8, 1060 (1982) [Sov. Tech. Phys. Lett. 8, 456 (1982)].

    Google Scholar 

  2. G. V. Ivanenkov, A. R. Mingaleev, and S. A. Pikuz, Fiz. Plazmy 22, 403 (1996) [Plasma Phys. Rep. 22, 363 (1996)].

    Google Scholar 

  3. T. A. Shelkovenko, D. B. Sinars, S. A. Pikuz, and D. A. Hammer, Phys. Plasmas 8, 1305 (2001).

    Article  ADS  Google Scholar 

  4. S. A. Pikuz, D. B. Sinars, T. A. Shelkovenko, et al., Phys. Rev. Lett. 89, 035 003 (2002).

    Google Scholar 

  5. T. A. Shelkovenko, D. B. Sinars, S. A. Pikuz, et al., Rev. Sci. Instrum. 72, 667 (2001).

    Article  ADS  Google Scholar 

  6. S. V. Lebedev, S. N. Bland, F. N. Beg, et al., Rev. Sci. Instrum. 72, 671 (2001).

    Article  ADS  Google Scholar 

  7. S. A. Pikuz, T. A. Shelkovenko, A. R. Mingaleev, et al., Proc. SPIE 5974, 59740L (2005).

  8. B. M. Song, T. A. Shelkovenko, S. A. Pikuz, et al., IEEE Trans. Nucl. Sci. 51, 2514 (2004).

    Article  ADS  Google Scholar 

  9. T. A. Shelkovenko, S. A. Pikuz, V. M. Romanova, et al., Proc. SPIE 5196, 36 (2004).

    Article  ADS  Google Scholar 

  10. T. A. Shelkovenko, S. A. Pikuz, B. M. Song, et al., Phys. Plasmas 12, 033102 (2005).

    Google Scholar 

  11. S. A. Pikuz, T. A. Shelkovenko, V. M. Romanova, et al., Zh. Éksp. Teor. Fiz. 112, 894 (1997) [JETP 85, 484 (1997)].

    Google Scholar 

  12. S. A. Pikuz, V. M. Romanova, T. A. Shelkovenko, et al., Phys. Scr. 51, 517 (1995).

    Article  ADS  Google Scholar 

  13. V. L. Kantsyrev, D. A. Fedin, A. S. Shlyaptseva, et al., Phys. Plasmas 10, 2519 (2003).

    Article  ADS  Google Scholar 

  14. V. L. Kantsyrev, D. A. Fedin, A. S. Shlyaptseva, et al., Rev. Sci. Instrum. 75, 3708 (2004).

    Article  ADS  Google Scholar 

  15. F. N. Beg, R. Stephens, Z. Karim, et al., AIP Conf. Proc. 808, 125 (2006).

    Article  ADS  Google Scholar 

  16. D. A. Kalantar, PhD. Thesis (Cornell University, Ithaca, NY, 1993).

  17. V. M. Romanova, Cand. Sci. (Phys.-Math.) Dissertation (Lebedev Phys. Inst., Russ. Acad. Sci., Moscow, 1996).

    Google Scholar 

  18. T. A. Shelkovenko, S. A. Pikuz, D. B. Sinars, et al., Phys. Plasmas 9, 2165 (2002).

    Article  ADS  Google Scholar 

  19. D. B. Sinars, S. A. Pikuz, T. A. Shelkovenko, et al., J. Quant. Spectrosc. Radiat. Transfer 78, 61 (2003).

    Article  ADS  Google Scholar 

  20. T. A. Shelkovenko, S. A. Pikuz, D. A. Hammer, et al., Phys. Plasmas 6, 2840 (1999).

    Article  ADS  Google Scholar 

  21. S. A. Pikuz, T. A. Shelkovenko, A. R. Mingaleev, et al., Phys. Plasmas 6, 4272 (1999).

    Article  ADS  Google Scholar 

  22. Encyclopedia of Physics, Vol. 30: X-rays, Ed. by S. Flugge (Springer-Verlag, Berlin, 1957).

    Google Scholar 

  23. A. Haga, S. Senda, Y. Sakai, et al., Appl. Phys. Lett. 84, 2208 (2004).

    Article  ADS  Google Scholar 

  24. S. Senda, Y. Sakai, Y. Ichikawa, et al., Rev. Sci. Instrum. 75, 1366 (2004).

    Article  ADS  Google Scholar 

  25. K. B. Abramova, N. A. Zlatin, and B. P. Peregud, Zh. Éksp. Teor. Fiz. 69, 2007 (1975) [Sov. Phys. JETP 42, 1019 (1975)].

    ADS  Google Scholar 

  26. T. A. Shelkovenko, S. A. Pikuz, G. V. Ivanenkov, et al., in Proceedings of the 15th International Conference on High-Power Particle Beams, St. Petersburg, 2004, p. 806.

  27. A. E. Ter-Oganes’yan, S. I. Tkachenko, V. M. Romanova, et al., Fiz. Plazmy 31, 989 (2005) [Plasma Phys. Rep. 31, 919 (2005)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © T.A. Shelkovenko, S.A. Pikuz, A.R. Mingaleev, A.V. Agafonov, V.M. Romanova, A.E. Ter-Oganes’yan, S.I. Tkachenko, I.C. Blesener, M.D. Mitchell, K.M. Chandler, B.R. Kusse, D.A. Hammer, 2008, published in Fizika Plazmy, 2008, Vol. 34, No. 9, pp. 816–833.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shelkovenko, T.A., Pikuz, S.A., Mingaleev, A.R. et al. Accelerated electrons and hard X-ray emission from X-pinches. Plasma Phys. Rep. 34, 754–770 (2008). https://doi.org/10.1134/S1063780X08090109

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X08090109

PACS numbers

Navigation