Skip to main content
Log in

The composition of fatty acids and stable isotopes in the detritophage Acila insignis (Gould, 1861) (Bivalvia: Nuculidae): Searching for markers of a microbial food web

  • Ecology
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

The fatty acid composition and stable isotope ratios of carbon, nitrogen, and sulfur were analyzed in the protobranch bivalve Acila insignis, a selective detritophage inhabiting subtidal sand sediments of Vostok Bay (Sea of Japan). Soft tissues of A. insignis contained abnormally high concentrations of the polyunsaturated arachidonic acid, 20: 4(n-6), and a rare monounsaturated fatty acid 20: 1(n-13), which distinguishes this species from other bivalves. The high concentrations of these fatty acids in A. insignis, together with the low values of σ34S and the high values of σ13C and σ15N, are probably a result of feeding on the microbial food web.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kiyashko, S.I., Kharlamenko, V.I., and Imbs, A.B., Stable Isotope Ratios and Fatty Acids as Food Source Markers of Deposit-Feeding Invertebrates, Russ. J. Mar. Biol., 1998, vol. 24, no. 3, pp. 170–174.

    Google Scholar 

  2. Selin, N.I., Vertical Distribution of Infaunal Bivalve Mollusks of Upper Subtidal Sands in Connection with Morphofunctional Adaptations of Their Shells, Dokl. Ros. Akad. Nauk, 1999, vol. 368, pp. 571–573.

    CAS  Google Scholar 

  3. Kharlamenko, V.I., Kiyashko, S.I., Rodkina, S.A., and Imbs, A.B., Determination of Food Sources of Marine Invertebrates from a Subtidal Sand Community Using Analyses of Fatty Acids and Stable Isotopes, Russ. J. Mar. Biol., 2008, vol. 34, no. 2, pp. 101–109.

    Article  CAS  Google Scholar 

  4. Allen, C.E., Tyler, P.A., and Van Dover, C.L., Lipid Composition of the Hydrothermal Vent Clam Calyptogena pacifica (Mollusca: Bivalvia) as a Trophic Indicator, J. Mar. Biol. Assoc. U.K., 2001, vol. 81, pp. 817–821.

    Article  CAS  Google Scholar 

  5. Andersson, B.A. and Holman, R.T., Mass Spectrometric Determination of Positions of Double Bonds in Polyunsaturated Fatty Acid Pyrrolidides, Lipids, 1975, vol. 10, pp. 215–219.

    Article  CAS  Google Scholar 

  6. Azam, F., Fenchel, T., Field, J.G., et al., The Ecological Role of Water-Column Microbes in the Sea, Mar. Ecol. Prog. Ser., 1983, vol. 10, pp. 257–263.

    Article  Google Scholar 

  7. Ben-Mlih, F., Marty, J.C., and Fiala-Medioni, A., Fatty Acid Composition in Deep Hydrothermal Vent Symbiotic Bivalves, J. Lipid Res., 1992, vol. 33, pp. 1797–1806.

    PubMed  CAS  Google Scholar 

  8. Berg, C.J., Krzynowek, J., Alatalo, P., et al., Sterol and Fatty Acid Composition of the Clam, Codakia orbicularis, with Chemoautotrophic Symbionts, Lipids, 1985, vol. 20, pp. 116–120.

    Article  PubMed  CAS  Google Scholar 

  9. Bligh, E.G. and Dyer, W.J., A Rapid Method of Total Lipid Extraction and Purification, Can. J. Biochem. Physiol., 1959, vol. 37, pp. 911–917.

    Article  PubMed  CAS  Google Scholar 

  10. Buhring, S.I., Koppelmann, R., Christiansen, B., et al., Are Rhodophyceae a Dietary Component for Deep-Sea Holothurians? J. Mar. Biol. Assoc. U.K., 2002, vol. 82, pp. 347–348.

    Article  Google Scholar 

  11. Carreau, J.P. and Dubacq, J.P., Adaptation of Macroscale Method to the Micro-scale for Fatty Acid Methyl Transesterification of Biological Lipid Extracts, J. Chromatogr., 1978, vol. 151, pp. 384–390.

    Article  CAS  Google Scholar 

  12. Cheng, I.J. and Lopez, G.R., Contributions of Bacteria and Sedimentary Organic Matter to the Diet of Nucula proxima, a Deposit-Feeding Protobranchiate Bivalve, Ophelia, 1991, vol. 34, pp. 157–170.

    Google Scholar 

  13. Conway, N. and Capuzzo, J.M., Incorporation and Utilization of Bacterial Lipids in the Solemya velum Symbiosis, Mar. Biol., 1991, vol. 108, pp. 277–291.

    Article  CAS  Google Scholar 

  14. Dalsgaard, J., John, M.,St., Kattner, G., et al., Fatty Acid Trophic Markers in the Pelagic Marine Environment, Adv. Mar. Biol., 2003, vol. 46, pp. 225–340.

    Article  PubMed  Google Scholar 

  15. Desvilettes, C., Bourdier, G., Breton, J.C., et al., Fatty Acids as Organic Markers for the Study of Trophic Relationships in Littoral Cladoceran Communities of a Pond, J. Plankton Res., 1994, vol. 16, pp. 643–659.

    Article  Google Scholar 

  16. Fullarton, J.G., Dando, P.R., Sargent, J.R., et al., Fatty Acids of Hydrothermal Vent Ridgeia piscesae and Inshore Bivalves Containing Symbiotic Bacteria, J. Mar. Biol. Assoc. U.K., 1995a, vol. 75, pp. 455–468.

    Article  CAS  Google Scholar 

  17. Fullarton, J.G., Wood, A.P., and Sargent, J.R., Fatty Acid Composition of Lipids from Sulfur-Oxidizing and Methylotrophic Bacteria from Thyasirid and Lucinid Bivalves, J. Mar. Biol. Assoc. U.K., 1995b, vol. 75, pp. 445–454.

    Article  CAS  Google Scholar 

  18. Ginger, M.L., Santos, V., and Wolff, G.A., A Preliminary Investigation of the Lipids of Abyssal Holothurians from the North-East Atlantic Ocean, J. Mar. Biol. Assoc. U.K., 2000, vol. 80, pp. 139–146.

    Article  CAS  Google Scholar 

  19. Gooday, A.J., Pond, D.W., and Bowser, S.S., Ecology and Nutrition of the Large Agglutinated Foraminiferan Bathysiphon capillare in the Bathyal NE Atlantic: Distribution within the Sediment Profile and Lipid Biomarker Composition, Mar. Ecol. Prog. Ser., 2002, vol. 245, pp. 69–82.

    Article  Google Scholar 

  20. Hobson, K.A., Fisk, A., Karnovsky, N., et al., A Stable Isotope (δ13C, δ15N) Model for the North Water Food Web: Implications for Evaluating Trophodynamics and the Flow of Energy and Contaminants, Deep-Sea Res. II, 2002, vol. 49, pp. 5131–5150.

    Article  CAS  Google Scholar 

  21. Howell, K.L., Pond, D.W., Billett, D.S.M., et al., Feeding Ecology of Deep-Sea Seastars (Echinodermata: Asteroidea): a Fatty-Acid Biomarker Approach, Mar. Ecol. Prog. Ser., 2003, vol. 255, pp. 193–206.

    Article  CAS  Google Scholar 

  22. Jahnke, L.L., Summons, R.E., Dowling, L.M., et al., Identification of Methanotrophic Lipid Biomarkers in Cold-Seep Mussel Gills-Chemical and Isotopic Analysis, Appl. Environ. Microbiol., 1995, vol. 61, pp. 576–582.

    PubMed  CAS  Google Scholar 

  23. Kharlamenko, V.I., Kiyashko, S.I., Imbs, A.B., et al., Identification of Food Sources of Invertebrates from the Seagrass Zostera marina Community Using Carbon and Sulfur Stable Isotope Ratio and Fatty Acid Analyses, Mar. Ecol. Prog. Ser., 2001, vol. 220, pp. 103–117.

    Article  CAS  Google Scholar 

  24. Kharlamenko, V.I., Zhukova, N.V., Khotimchenko, S.V., et al. Fatty Acids as Markers of Food Sources in a Shallow-Water Hydrothermal Ecosystem (Kraternaya Bight, Yankich Island, Kurile Islands), Mar. Ecol. Prog. Ser., 1995, vol. 120, pp. 231–241.

    Article  CAS  Google Scholar 

  25. Laureillard, J., Mejanelle, L., and Sibuet, M., Use of Lipids to Study the Trophic Ecology of Deep-Sea Xenophyophores, Mar. Ecol. Prog. Ser., 2004, vol. 270, pp. 129–140.

    Article  CAS  Google Scholar 

  26. Mansour, M., Holdsworth, D., Forbes, S., et al., High Contents of 24: 6(n-3) and 20: 1(n-13) Fatty Acids in the Brittle Star from Tasmanian Coastal Sediments, Biochem. Syst. Ecol., 2005, vol. 33, pp. 659–674.

    Article  CAS  Google Scholar 

  27. McCutchan, J.H., Lewis, W.M., Kendall, C., Variation in Trophic Shift for Stable Isotope Ratios of Carbon, Nitrogen, and Sulfur, Oikos, 2003, vol. 102, pp. 378–390.

    Article  CAS  Google Scholar 

  28. Mincks, S.L., Smith, C.R., Jeffreys, R.M., et al., Trophic Structure on the West Antarctic Peninsula Shelf: Detritivory and Benthic Inertia Revealed by δ13C and δ15N Analysis, Deep-Sea Res. II, 2008, vol. 55, pp. 2502–2514.

    Article  CAS  Google Scholar 

  29. Moncreiff, C.A. and Sullivan, M.J., Trophic Importance of Epiphytic Algae in Subtropical Seagrass Beds: Evidence from Multiple Stable Isotope Analyses, Mar. Ecol. Prog. Ser., 2001, vol. 215, pp. 93–106.

    Article  CAS  Google Scholar 

  30. Nichols, D.S., Nichols, P.D., and McMeekin, T.A., Polyunsaturated Fatty Acids in Antarctic Bacteria, Antarct. Sci., 1993, vol. 5, pp.149–160.

    Google Scholar 

  31. Ota, T., Ando, Y., Nakajima, H., et al., C20–C24 Monounsaturated Fatty Acid Isomers in the Lipids of Flathead Flounder, Hippoglossoides dubius, Comp. Biochem. Physiol. B., 1995, vol. 111, pp. 195–200.

    Article  Google Scholar 

  32. Pomeroy, L.R., Caught in the Food Web: Complexity Made Simple? Sci. Mar., 2001, vol. 65, pp. 31–40.

    Article  Google Scholar 

  33. Pond, D.W., Bell, M.V., Dixon, D.R., et al., Stable Carbon-Isotope Composition of Fatty Acids in Hydrothermal Vent Mussels Containing Methanotrophic and Thiotrophic Bacterial Endosymbionts, Appl. Environ. Microbiol., 1998, vol. 64, pp. 370–375.

    PubMed  CAS  Google Scholar 

  34. Riera, P., Escaravage, C., and Leroux, C., Trophic Ecology of the Rocky Shore Community Associated with the Ascophyllum nodosum Zone (Roscoff, France): A δ13C vs. δ15N Investigation, Estuar. Coast. Shelf Sci., 2009, vol. 81, pp. 143–148.

    Article  Google Scholar 

  35. Saito, H., Unusual Novel n-4 Polyunsaturated Fatty Acids in Cold-Seep Mussels (Bathymodiolus japonicus and Bathymodiolus platifrons), Originating from Symbiotic Methanotrophic Bacteria, J. Chromatogr. A, 2008, vol. 1200, pp. 242–254.

    Article  PubMed  CAS  Google Scholar 

  36. Saito, H. and Osako, K., Confirmation of a New Food Chain Utilizing Geothermal Energy: Unusual Fatty Acids of a Deep-Sea Bivalve, Calyptogena phaseoliformis, Limnol. Oceanogr., 2007, vol. 52, pp. 1910–1918.

    Article  Google Scholar 

  37. Sorokin, Yu.I., Microheterotrophic Organisms in Marine Ecosystems, Analysis of Marine Ecosystems, New York: Academic Press, 1981, pp. 293–342.

    Google Scholar 

  38. Stasek, C.R., The Ciliation and Function of the Labial Palps of Acila castrensis (Protobranchia, Nuculidae), with an Evaluation of the Role of the Protobranch Organs of Feeding in the Evolution of the Bivalvia, Proc. Zool. Soc. Lond., 1961, vol. 137, pp. 511–538.

    Google Scholar 

  39. Vander Zanden, M.J. and Rasmussen, J.B., Variation in δ15N and δ13C Trophic Fractionation: Implications for Aquatic Food Web Studies, Limnol. Oceanogr., 2001, vol. 46, pp. 2061–2066.

    Article  Google Scholar 

  40. Zardus, J.D., Protobranch Bivalves, Adv. Mar. Biol., 2002, vol. 42, pp. 1–65.

    Article  PubMed  Google Scholar 

  41. Zhukova, N.V. and Kharlamenko, V.I., Sources of Essential Fatty Acids in the Marine Microbial Loop, Aquat. Microb. Ecol., 1999, vol. 17, pp. 153–157.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Kharlamenko.

Additional information

Original Russian Text © V.I. Kharlamenko, S.I. Kiyashko, S.A. Rodkina, V.I. Svetashev, 2011, published in Biologiya Morya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kharlamenko, V.I., Kiyashko, S.I., Rodkina, S.A. et al. The composition of fatty acids and stable isotopes in the detritophage Acila insignis (Gould, 1861) (Bivalvia: Nuculidae): Searching for markers of a microbial food web. Russ J Mar Biol 37, 201–208 (2011). https://doi.org/10.1134/S1063074011030060

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063074011030060

Keywords

Navigation