Skip to main content
Log in

1444-nm Q-switched pulse generator based on Nd:YAG/V:YAG microchip laser

  • Solid State and Liquid Lasers
  • Published:
Laser Physics

Abstract

Q-switched microchip laser emitting radiation at eye-safe wavelength 1444 nm was designed and realized. This laser was based on composite crystal which consists of 4 mm long Nd:YAG active medium diffusion bonded with 1 mm long V:YAG saturable absorber. The diameter of the composite crystal was 5 mm. The initial transmission of the V:YAG part was T 0 = 94% @ 1440 nm. The microchip resonator consists of dielectric mirrors, directly deposited onto the composite crystal surfaces. These mirrors were specially designed to ensure desired emission at 1444 nm and to prevent parasitic lasing at other Nd3+ transmissions. The output coupler with reflectivity 94% for the generated wavelength 1444 nm was placed on the V3+-doped part. The laser was operating under pulsed pumping for the duty-cycle up to 50%. With increasing value of mean pumping power a strong decrease of generated pulse length was observed. The shortest generated pulses were 4.2 ns long (FWHM). Stable pulses with energy 34 μJ were generated with repetition rate up to 1.5 kHz. Corresponding pulse peak power was 8.2 kW. The wavelength of linearly polarized TEM00 laser mode was fixed to 1444 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. Koechner, Solid State Laser Engeneering (Springer, Berlin, 1999).

    Google Scholar 

  2. Y. Inoue and S. Fujikawa, IEEE J. Quantum Electron 36, 751 (2000).

    Article  ADS  Google Scholar 

  3. Y. Chen and Y. Lan, Appl. Phys. B: Lasers Opt. 79, 29 (2004).

    Article  ADS  Google Scholar 

  4. H. Kang, H. Zhang, P. Yan, D. Wang, and M. Gong, Laser Phys. Lett. 5, 879 (2008).

    Article  Google Scholar 

  5. C. Zhang, X. Zhang, Q. Wang, Z. Cong, S. Fan, X. Chen, Z. Liu, and Z. Zhang, Laser Phys. Lett. 6, 521 (2009).

    Article  Google Scholar 

  6. B. Zhang, X. Dong, J. He, H. Huang, K. Yang, C. Zuo, J. Xu, and S. Zhao, Laser Phys. Lett. 5, 869 (2008).

    Article  Google Scholar 

  7. X. Chen, X. Zhang, Q. Wang, P. Li, S. Li, Z. Cong, Z. Liu, S. Fan, and H. Zhang, Laser Phys. Lett. 6, 363 (2009).

    Article  Google Scholar 

  8. C. Zhang, X. Zhang, Q. Wang, S. Fan, X. Chen, Z. Cong, Z. Liu, Z. Zhang, H. Zhang, and F. Su, Laser Phys. Lett. 6, 505 (2009).

    Article  Google Scholar 

  9. Y. Bai, Y. Li, Z. Shen, D. Song, Z. Ren, and J. Bai, Laser Phys. Lett. 6, 791 (2009).

    Article  Google Scholar 

  10. J. B. Marling, IEEE J. Quantum Electron. 14, 56 (1978).

    Article  ADS  Google Scholar 

  11. R. Moncorgé, B. Chambon, J. Rivoire, N. Gamier, E. Descroix, P. Laporte, H. Guillet, S. Roy, J. Mareschal, D. Pelenc, J. Doury, and P. Farge, Opt. Mater. 8, 109 (1997).

    Article  Google Scholar 

  12. R. C. Powell, Physics of Solid-State Laser Materials (Springer, New York, 1998).

    Google Scholar 

  13. H. M. Kretschmann, F. Heine, V. G. Ostroumov, and G. Huber, Opt. Lett. 22, 466 (1997).

    Article  ADS  Google Scholar 

  14. H. Jelínková, J. Pašta, J. Šulc, M. Némec, and P. Koranda, Laser Phys. Lett. 2, 603 (2005).

    Article  Google Scholar 

  15. R. J. Lanzafame and J. Nairn, J. Clin. Laser Med. Surg. 15, 23 (1997).

    Google Scholar 

  16. I. V. Klimov, I. A. Shcherbakov, and V. B. Tsvetkov, in ALT’98 Selected Papers on Novel Laser Methods in Medicine and Biology, Ed. by A. M. Prokhorov, V. I. Pustovoy, and G. P. Kuz’min, Proc. SPIE, Vol. 3829, pp. 165–179 (1999).

  17. R. S. Cummings, J. A. Prodoehl, A. L. Rhodes, J. D. Black, and H. H. Sherk, in Lasers in Orthopedic. Dental and Veterinary Medicine II, Ed. by D. Gal, S. J. O’Brien, C. T. Vangsness, J. M. White, and H. A. Wigdor, Proc. SPIE, Vol. 1880, pp. 34–36 (1993).

  18. E. E. Rebeiz, Z. Wang, M. M. Pankratov, D. F. Perrault, and S. M. Shapshay, in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems V, Ed. by R. R. Anderson, Proc. SPIE, Vol. 2395, pp. 208–214 (1995).

  19. R. Martiniuk, J. A. Bauer, J. D. McKean, J. Tulip, and B. W. Mielke, J. Neurosurg. 70, 249 (1989).

    Article  Google Scholar 

  20. J. Šulc, P. Arátor, H. Jelínková, K. Nejezchleb, and V. Škoda, in Solid State Lasers XVI: Technology and Devices, H. J. Hoffman, R. K. Shori, and N. Hodgson, Proc. SPIE, Vol. 6451, p. 64511 (2007).

  21. J. Šulc, H. Jelínková, K. Nejezchleb, and V. Škoda, Laser Phys. Lett. 2, 519 (2005).

    Article  Google Scholar 

  22. V. P. Mikhailov, N. I. Zhavoronkov, N. V. Kuleshov, V. A. Saudulenko, K. V. Yumashev, and P. V. Prokoshin, in Advanced Solid-State Lasers, Ed. by A. A. Pinto and T. Y. Fan, OSA Proc., Vol. 15, pp. 354–358 (Opt. Soc. Am., Washington, DC, 1993).

    Google Scholar 

  23. A. Agnesi, A. Guandalini, G. Reali, J. K. Jabczyński, K. Kopczyński, and Z. Mierczyk, Opt. Commun. 194, 429 (2001).

    Article  ADS  Google Scholar 

  24. A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, A. A. Demidovich, K. V. Yumashev, N. V. Kuleshov, H. J. Eichler, and M. B. Danailov, Opt. Mater. 16, 349 (2001).

    Article  ADS  Google Scholar 

  25. J. K. Jabczyński, K. Kopczyński, Z. Mierczyk, A. Agnesi, A. Guandalini, and G. Reali, Opt. Eng. 40, 2802 (2001).

    Article  ADS  Google Scholar 

  26. H. Jelínková, P. Černy, J. Šulc, J. K. Jabczyński, K. Kopczyński, W. Zendzian, Z. Mierczyk, and M. Miyagi, Opt. Eng. 41, 1976 (2002).

    Article  ADS  Google Scholar 

  27. J. Ma, Y. Li, Y. Sun, and X. Hou, Laser Phys. 18, 393 (2008).

    Article  ADS  Google Scholar 

  28. H.-T. Huang, B.-T. Zhang, J.-L. He, J.-F. Yang, J.-L. Xu, X.-Q. Yang, and S. Zhao, Laser Phys. Lett. 6, 775 (2009).

    Article  Google Scholar 

  29. F. Jia, Laser Phys. Lett. 6, 850 (2009).

    Article  Google Scholar 

  30. R. Wu, J. D. Myers, M. J. Myers, B. I. Denker, B. I. Galagan, S. E. Sverchkov, J. A. Hutchinson, and W. Trussel, in Solid State Lasers IX: Technology and Devices, Ed. by R. Scheps, Proc. SPIE, Vol. 3929, pp. 42–45 (2000).

  31. A. A. Kaminskii, Laser Crystals. Their Physics and Properties, Springer Ser. Opt. Sci., No. 14 (Springer, Berlin, 1981).

    Google Scholar 

  32. N. N. Il’ichev, A. V. Kir’yanov, P. P. Pashinin, V. A. Sandulenko, A. V. Sandulenkol, and S. M. Shpuga, Quantum Electron. 25, 1154 (1995).

    Article  ADS  Google Scholar 

  33. J. Šulc, H. Jelínková, K. Nejezchleb, and V. Škoda, in CLEO/Europe-EQEC 2009, Advance Programme on CD (Munich, Germany, 2009). CLEO.

  34. B. Henderson and R. H. Bartram, Crystal-Field Engineering of Solid-State Laser Materials, Cambridge Studies in Modern Optics (Cambridge Univ., Cambridge (2000).

    Book  Google Scholar 

  35. D. J. Segelstein, The Complex Refractive Index of Water, Master’s Thesis (Univ. Missouri, Kansas City, 1981).

    Google Scholar 

  36. S. D. Lord, “A New Software Tool for Computing Earth’s Atmospheric Transmission of Near- and Far-Infrared Radiation,” NASA Technical Memorandum 103957 (NASA, 1992).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Šulc.

Additional information

Original Russian Text © Astro, Ltd., 2010.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šulc, J., Novák, J., Jelínková, H. et al. 1444-nm Q-switched pulse generator based on Nd:YAG/V:YAG microchip laser. Laser Phys. 20, 1288–1294 (2010). https://doi.org/10.1134/S1054660X10110216

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X10110216

Keywords

Navigation