Skip to main content
Log in

Phylogeny of the order rodentia inferred from structural analysis of short retroposon B1

  • General Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

A large-scale study of short retroposon (SINE) B1 has been conducted in the genome of rodents from most of the known families of this mammalian order. The B1 nucleotide sequences of rodents from different families exhibited a number of characteristic features including substitutions, deletions, and tandem duplications. Comparing the distribution of these features among the rodent families, the currently discussed phylogenetic relationships were tested. The results of analysis indicated (1) an early divergence of Sciuridae and related families (Aplodontidae and Gliridae) from the other rodents; (2) a possible subsequent divergence of beavers (Castoridae); (3) a monophyletic origin of the group Hystricognathi, which includes several families, such as porcupines (Hystricidae) and guinea pigs (Caviidae); (4) a possible monophyletic origin of the group formed by the remaining families, including six families of mouselike rodents (Myodonta). Various approaches to the use of short retroposons for phylogenetic studies are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Deininger, P.L. and Batzer, M.A., Mammalian Retroelements, Genome Res., 2002, vol. 12, no. 10, pp. 1455–1465.

    Article  PubMed  CAS  Google Scholar 

  2. Kramerov, D. and Vassetzky, N., Short Retroposons in Eukaryotic Genomes, Int. Rev. Cytol., 2005, vol. 247, pp. 165–221.

    PubMed  CAS  Google Scholar 

  3. Okada, N., SINEs, Curr. Opin. Genet. Dev., 1991, vol. 1, no. 4, pp. 498–504.

    Article  PubMed  CAS  Google Scholar 

  4. Kapitonov, V.V. and Jurka, J., A Novel Class of SINE Elements Derived from 5S rRNA, Mol. Biol. Evol., 2003, vol. 20, no. 5, pp. 694–702.

    Article  PubMed  CAS  Google Scholar 

  5. Nishihara, H., Smit, A.F., and Okada, N., Functional Noncoding Sequences Derived from SINEs in the Mammalian Genome, Genome Res., 2006, vol. 16, no. 7, pp. 864–874.

    Article  PubMed  CAS  Google Scholar 

  6. Kramerov, D.A., Grigoryan, A.A., Ryskov, A.P., et al., Long Double-Stranded Sequences (dsRNA-B) of Nuclear Pre-mRNA Consist of a Few Highly Abundant Classes of Sequences: Evidence from DNA Cloning Experiments, Nucleic Acids Res, 1979, vol. 6, no. 2, pp. 697–713.

    Article  PubMed  CAS  Google Scholar 

  7. Krayev, A.S., Kramerov, D.A., Skryabin, K.G., et al., The Nucleotide Sequence of the Ubiquitous Repetitive DNA Sequence B1 Complementary to the Most Abundant Class of Mouse Fold-Back RNA, Nucleic Acids Res., 1980, vol. 8, no. 6, pp. 1201–1215.

    Article  PubMed  CAS  Google Scholar 

  8. Deininger, P.L., Jolly, D.J., Rubin, C.M., et al., Base Sequence Studies of 300 Nucleotide Renatured Repeated Human DNA Clones, J. Mol. Biol., 1981, vol. 151, no. 1, pp. 17–33.

    Article  PubMed  CAS  Google Scholar 

  9. Haynes, S.R., Toomey, T.P., Leinwand, L., et al., The Chinese Hamster Alu-Equivalent Sequence: A Conserved Highly Repetitious, Interspersed Deoxyribonucleic Acid Sequence in Mammals Has a Structure Suggestive of a Transposable Element, Mol. Cell. Biol., 1981, vol. 1, no. 7, pp. 573–583.

    PubMed  CAS  Google Scholar 

  10. Ullu, E. and Tschudi, C., Alu Sequences Are Processed 7SL RNA Genes, Nature, 1984, vol. 312, no. 5990, pp. 171–172.

    Article  PubMed  CAS  Google Scholar 

  11. Daniels, G.R. and Deininger, P.L., A Second Major Class of Alu Family Repeated DNA Sequences in a Primate Genome, Nucleic Acids Res., 1983, vol. 11, no. 21, pp. 7595–7610.

    Article  PubMed  CAS  Google Scholar 

  12. Zietkiewicz, E., Richer, C., Sinnett, D., et al., Monophyletic Origin of Alu Elements in Primates, J. Mol. Evol., 1998, vol. 47, no. 2, pp. 172–182.

    Article  PubMed  CAS  Google Scholar 

  13. Roos, C., Schmitz, J., and Zischler, H., Primate Jumping Genes Elucidate Strepsirrhine Phylogeny, Proc. Natl. Acad. Sci. USA, 2004, vol. 101, no. 29, pp. 10 650–10 654.

    Article  CAS  Google Scholar 

  14. Labuda, D., Sinnett, D., Richer, C., et al., Evolution of Mouse B1 Repeats: 7SL RNA Folding Pattern Conserved, J. Mol. Evol., 1991, vol. 32, no. 5, pp. 405–414.

    Article  PubMed  CAS  Google Scholar 

  15. Quentin, Y., A Master Sequence Related to a Free Left Alu Monomer (FLAM) at the Origin of the B1 Family in Rodent Genomes, Nucleic Acids Res., 1994, vol. 22, no. 12, pp. 2222–2227.

    Article  PubMed  CAS  Google Scholar 

  16. Hartenberger, J.-L., The Order Rodentia: Major Questions on Their Evolutionary Origin, Relationships and Suprafamilial Systematics, in Evolutionary Relationship among Rodents, Luckett, W. and Hartenberger, J.-L., Eds., New York: Plenum, 1985, pp. 1–33.

    Google Scholar 

  17. Pavlinov, I., Sistematika sovremennykh mlekopitayushchikh (Systematics of Contemporary Mammals), Moscow: Mosk. Gos. Univ., 2003.

    Google Scholar 

  18. Krayev, A.S., Markusheva, T.V., Kramerov, D.A., et al., Ubiquitous Transposon-Like Repeats B1 and B2 of the Mouse Genome: B2 Sequencing, Nucleic Acids Res., 1982, vol. 10, no. 23, pp. 7461–7475.

    Article  PubMed  CAS  Google Scholar 

  19. Den Dunnen, J.T. and Schoenmakers, J.G., Consensus Sequences of the Rattus norvegicus B1 and B2 Repeats, Nucleic Acids Res., 1987, vol. 15, no. 6, p. 2772.

    Article  Google Scholar 

  20. Bains, W. and Temple-Smith, K., Similarity and Divergence among Rodent Repetitive DNA Sequences, J. Mol. Evol., 1989, vol. 28, no. 3, pp. 191–199.

    Article  PubMed  CAS  Google Scholar 

  21. Waterston, R.H., Lindblad-Toh, K., Birney, E., et al., Initial Sequencing and Comparative Analysis of the Mouse Genome, Nature, 2002, vol. 420, no. 6915, pp. 520–562.

    Article  PubMed  CAS  Google Scholar 

  22. Gibbs, R.A., Weinstock, G.M., Metzker, M.L., et al., Genome Sequence of the Brown Norway Rat Yields Insights into Mammalian Evolution, Nature, 2004, vol. 428, no. 6982, pp. 493–521.

    Article  PubMed  CAS  Google Scholar 

  23. Kim, J., Martignetti, J.A., Shen, M.R., et al., Rodent BC1 RNA Gene as a Master Gene for ID Element Amplification, Proc. Natl. Acad. Sci. USA, 1994, vol. 91, no. 9, pp. 3607–3611.

    Article  PubMed  CAS  Google Scholar 

  24. Serdobova, I.M. and Kramerov, D.A., Short Retroposons of the B2 Superfamily: Evolution and Application for the Study of Rodent Phylogeny, J. Mol. Evol., 1998, vol. 46, pp. 202–214.

    Article  PubMed  CAS  Google Scholar 

  25. Kramerov, D.A. and Vassetzky, N.S., Structure and Origin of a Novel Dimeric Retroposon B1-dID, J. Mol. Evol., 2001, vol. 52, no. 2, pp. 137–143.

    PubMed  CAS  Google Scholar 

  26. Vassetzky, N.S., Ten, O.A., and Kramerov, D.A., B1 and Related SINEs in Mammalian Genomes, Gene, 2003, vol. 319, pp. 149–160.

    Article  PubMed  CAS  Google Scholar 

  27. Nishihara, H., Terai, Y., and Okada, N., Characterization of Novel Alu-and tRNA-Related SINEs from the Tree Shrew and Evolutionary Implications of Their Origins, Mol. Biol. Evol., 2002, vol. 19, no. 11, pp. 1964–1972.

    PubMed  CAS  Google Scholar 

  28. Serdobova, I.M. and Kramerov, D.A., Usage of Short Retroposons as Phylogenetic Markers, Dokl. Akad. Nauk SSSR, 1994, vol. 335, no. 5, pp. 664–667.

    CAS  Google Scholar 

  29. Kramerov, D., Vassetzky, N., and Serdobova, I., The Evolutionary Position of Dormice (Gliridae) in Rodentia Determined by a Novel Short Retroposon, Mol. Biol. Evol., 1999, pp. 715–716.

  30. Felsenstein, J., Phylogenies from Gene Frequencies: A Statistical Problem, Systematic Zool., 1985, vol. 34, no. 3, pp. 300–311.

    Article  Google Scholar 

  31. Felsenstein, J., PHYLIP—Phylogeny Inference Package (Version 3.2), Cladistics, 1989, vol. 5, pp. 164–166.

    Google Scholar 

  32. Huchon, D. and Douzery, E.J., From the Old World to the New World: A Molecular Chronicle of the Phylogeny and Biogeography of Hystricognath Rodents, Mol. Phylogenet. Evol., 2001, vol. 20, no. 2, pp. 238–251.

    Article  PubMed  CAS  Google Scholar 

  33. Huchon, D., Madsen, O., Sibbald, M.J., et al., Rodent Phylogeny and a Timescale for the Evolution of Glires: Evidence from an Extensive Taxon Sampling Using Three Nuclear Genes, Mol. Biol. Evol., 2002, vol. 19, no. 7, pp. 1053–1065.

    PubMed  CAS  Google Scholar 

  34. Adkins, R.M., Gelke, E.L., Rowe, D., et al., Molecular Phylogeny and Divergence Time Estimates for Major Rodent Groups: Evidence from Multiple Genes, Mol. Biol. Evol., 2001, vol. 18, no. 5, pp. 777–791.

    PubMed  CAS  Google Scholar 

  35. Adkins, R.M., Walton, A.H., and Honeycutt, R.L., Higher-Level Systematics of Rodents and Divergence Time Estimates Based on Two Congruent Nuclear Genes, Mol. Phylogenet. Evol., 2003, vol. 26, no. 3, pp. 409–420.

    Article  PubMed  CAS  Google Scholar 

  36. Steppan, S., Adkins, R., and Anderson, J., Phylogeny and Divergence-Date Estimates of Rapid Radiations in Muroid Rodents Based on Multiple Nuclear Genes, Syst. Biol., 2004, vol. 53, no. 4, pp. 533–553.

    Article  PubMed  Google Scholar 

  37. Opazo, J.C., A Molecular Timescale for Caviomorph Rodents (Mammalia, Hystricognathi), Mol. Phylogenet. Evol., 2005, vol. 37, no. 3, pp. 932–937.

    Article  PubMed  CAS  Google Scholar 

  38. Quentin, Y., Emergence of Master Sequences in Families of Retroposons Derived from 7sl RNA, Genetics, 1994, vol. 93, nos. 1–3, pp. 203–215.

    CAS  Google Scholar 

  39. Carrol, R., Vertebrate Paleontology and Evolution, New York: Freeman, 1988.

    Google Scholar 

  40. Reyes, A., Pesole, G., and Saccone, C., Long-Branch Attraction Phenomenon and the Impact of Among-Site Variation on Rodent Phylogeny, Gene, 2000, vol. 259, nos. 1–2, pp. 177–187.

    Article  PubMed  CAS  Google Scholar 

  41. D’erchia, A.M., Gissi, C., Pesole, G., et al., The Guinea-Pig Is Not a Rodent, Nature, 1996, vol. 381, no. 6583, pp. 597–600.

    Article  PubMed  CAS  Google Scholar 

  42. Murphy, W.J., Eizirik, E., O’Brien, S.J., et al., Resolution of the Early Placental Mammal Radiation Using Bayesian Phylogenetics, Science, 2001, vol. 294, no. 5550, pp. 2348–2351.

    Article  PubMed  CAS  Google Scholar 

  43. Shimamura, M., Yasue, H., Ohshima, K., et al., Molecular Evidence from Retroposons that Whales Form a Clade within Even-Toed Ungulates, Nature, 1997, vol. 388, no. 6643, pp. 666–670.

    Article  PubMed  CAS  Google Scholar 

  44. Stoneking, M., Fontius, J.J., Clifford, S.L., et al., Alu Insertion Polymorphisms and Human Evolution: Evidence for a Larger Population Size in Africa, Genome Res., 1997, vol. 7, no. 11, pp. 1061–1071.

    PubMed  CAS  Google Scholar 

  45. Watkins, W.S., Rogers, A.R., Ostler, C.T., et al., Genetic Variation Among World Populations: Inferences from 100 Alu Insertion Polymorphisms, Genome Res., 2003, vol. 13, no. 7, pp. 1607–1618.

    Article  PubMed  CAS  Google Scholar 

  46. Nikaido, M., Nishihara, H., Hukumoto, Y., et al., Ancient SINEs from African Endemic Mammals, Mol. Biol. Evol., 2003, vol. 20, no. 4, pp. 522–527.

    Article  PubMed  CAS  Google Scholar 

  47. Rothenburg, S., Eiben, M., Koch-Nolte, E., et al., Independent Integration of Rodent Identifier (ID) Elements into Orthologous Sites of Some RT6 Alleles of Rattus norvegicus and Rattus rattus, J. Mol. Evol., 2002, vol. 55, no. 3, pp. 251–259.

    Article  PubMed  CAS  Google Scholar 

  48. Van De Lagemaat, L.N., Gagnier, L., Medstrand, P., et al., Genomic Deletions and Precise Removal of Transposable Elements Mediated by Short Identical DNA Segments in Primates, Genome Res., 2005, vol. 15, no. 9, pp. 1243–1249.

    Article  PubMed  Google Scholar 

  49. Terai, Y., Takahashi, K., Nishida, M., et al., Using SINEs to Probe Ancient Explosive Speciation: “Hidden” Radiation of African Cichlids?, Mol. Biol. Evol., 2003, vol. 20, no. 6, pp. 924–930.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.A. Veniaminova, N.S. Vassetzky, L.A. Lavrenchenko, S.V. Popov, D.A. Kramerov, 2007, published in Genetika, 2007, Vol. 43, No. 7, pp. 916–929.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veniaminova, N.A., Vassetzky, N.S., Lavrenchenko, L.A. et al. Phylogeny of the order rodentia inferred from structural analysis of short retroposon B1. Russ J Genet 43, 757–768 (2007). https://doi.org/10.1134/S1022795407070071

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795407070071

Keywords

Navigation