Skip to main content
Log in

On congruences for the traces of powers of some matrices

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

In a series of recent papers, V.I. Arnold studied many questions concerning the statistics and dynamics of powers of elements in algebraic systems. In particular, on the basis of experimental data, he proposed an Euler-type congruence for the traces of powers of integer matrices as a conjecture. The proof of this conjecture was deduced from the author’s theorem (obtained at the end of 2004) on congruences for the traces of powers of elements in number fields. Recently, it turned out that there also exist other approaches to congruences for the traces of powers of integer matrices. In the present paper, the author’s results of 2004 are strengthened and a survey of their relations to number theory, theory of dynamical systems, combinatorics, and p-adic analysis is given. The main conclusion of this survey is that all approaches considered here ultimately reflect different points of view on a certain simple but important phenomenon in mathematics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Algebraic Number Theory, Ed. by J. W. C. Cassels and A. Fröhlich (Academic, London, 1967; Mir, Moscow, 1969).

    MATH  Google Scholar 

  2. V. I. Arnold, “Fermat-Euler Dynamical Systems and the Statistics of Arithmetics of Geometric Progressions,” Funkts. Anal. Prilozh. 37(1), 1–18 (2003) [Funct. Anal. Appl. 37, 1–15 (2003)].

    Article  MATH  Google Scholar 

  3. V. I. Arnold, “The Topology of Algebra: Combinatorics of Squaring,” Funkts. Anal. Prilozh. 37(3), 20–35 (2003) [Funct. Anal. Appl. 37, 177–190 (2003)].

    Google Scholar 

  4. V. I. Arnold, Euler Groups and Arithmetic of Geometric Progressions (MTsNMO, Moscow, 2003) [in Russian].

    Google Scholar 

  5. V. I. Arnol’d, “Topology and Statistics of Formulae of Arithmetics,” Usp. Mat. Nauk 58(4), 3–28 (2003) [Russ. Math. Surv. 58, 637–664 (2003)].

    Google Scholar 

  6. V. I. Arnold, “Fermat Dynamics, Matrix Arithmetics, Finite Circles, and Finite Lobachevsky Planes,” Funkts. Anal. Prilozh. 38(1), 1–15 (2004) [Funct. Anal. Appl. 38, 1–13 (2004)].

    Article  MATH  Google Scholar 

  7. V. I. Arnol’d, “The Matrix Euler-Fermat Theorem,” Izv. Ross. Akad. Nauk, Ser. Mat. 68(6), 61–70 (2004) [Izv. Math. 68, 1119–1128 (2004)].

    MathSciNet  Google Scholar 

  8. V. I. Arnol’d, “Geometry and Dynamics of Galois Fields,” Usp. Mat. Nauk 59(6), 23–40 (2004) [Russ. Math. Surv. 59, 1029–1046 (2004)].

    Google Scholar 

  9. V. I. Arnold, “Number-Theoretical Turbulence in Fermat-Euler Arithmetics and Large Young Diagrams Geometry Statistics,” J. Math. Fluid Mech. 7(Suppl. 1), S4–S50 (2005).

    Article  MATH  Google Scholar 

  10. V. I. Arnold, “Ergodic and Arithmetical Properties of Geometrical Progression’s Dynamics and of Its Orbits,” Moscow Math. J. 5(1), 5–22 (2005).

    MATH  Google Scholar 

  11. V. I. Arnold, “On the Matricial Version of Fermat-Euler Congruences,” Jpn. J. Math., Ser. 3, 1, 1–24 (2006).

    MATH  Google Scholar 

  12. I. K. Babenko and S. A. Bogatyi, “Lefschetz Numbers, Local Indices, and Periodic Points,” Dokl. Akad. Nauk SSSR 291(3), 521–524 (1986) [Sov. Math., Dokl. 34, 492–495 (1987)].

    MathSciNet  Google Scholar 

  13. I. K. Babenko and S. A. Bogatyi, “The Behavior of the Index of Periodic Points under Iterations of a Mapping,” Izv. Akad. Nauk SSSR, Ser. Mat. 55(1), 3–31 (1991) [Math. USSR, Izv. 38, 1–26 (1992)].

    MathSciNet  Google Scholar 

  14. S. A. Bogatyi, “The Number of Periodic Points of a Mapping of an Interval Grows Exponentially,” Soobshch. Akad. Nauk Gruz. SSR 121(1), 25–28 (1986).

    MathSciNet  Google Scholar 

  15. S. A. Bogatyi, “Indexes of Iterations of Multi-valued Mappings,” C. R. Acad. Bulg. Sci. 41(2), 13–16 (1988).

    MathSciNet  Google Scholar 

  16. Z. I. Borevich and I. R. Shafarevich, Number Theory (Nauka, Moscow, 1985) [in Russian].

    MATH  Google Scholar 

  17. N. Bourbaki, Eléments de mathématique. Algèbre commutative. Chapitre 8: Dimension. Chapitre 9: Anneaux locaux noethériens complets (Masson, Paris, 1983).

    MATH  Google Scholar 

  18. R. F. Brown, “Wecken Properties for Manifolds,” in Nielsen Theory and Dynamical Systems, Ed. by C. K. McCord (Am. Math. Soc., Providence, RI, 1993), Contemp. Math. 152, pp. 9–21.

    Google Scholar 

  19. Chong-Yun Chao, “Generalizations of Theorems of Wilson, Fermat and Euler,” J. Number Theory 15(1), 95–114 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  20. Cohomologies p-adiques et applications arithmétiques (II), Ed. by P. Berthelot, J.-M. Fontaine, L. Illusie, K. Kato, and M. Rapoport (Soc. Math. France, Paris, 2002), Astérisque 279.

    MATH  Google Scholar 

  21. Cohomologies p-adiques et applications arithmétiques (III), Ed. by P. Berthelot, J.-M. Fontaine, L. Illusie, K. Kato, and M. Rapoport (Soc. Math. France, Paris, 2004), Astérisque 295.

    MATH  Google Scholar 

  22. L. E. Dickson, History of the Theory of Numbers (Chelsea, New York, 1971), Vol. 1.

    Google Scholar 

  23. A. Dold, Lectures on Algebraic Topology (Springer, Berlin, 1972; Mir, Moscow, 1976).

    MATH  Google Scholar 

  24. A. Dold, “Fixed Point Indices of Iterated Maps,” Invent. Math. 74, 419–435 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  25. A. Fel’shtyn and R. Hill, “Dynamical Zeta Functions, Nielsen Theory and Reidemeister Torsion,” in Nielsen Theory and Dynamical Systems, Ed. by C. K. McCord (Am. Math. Soc., Providence, RI, 1993), Contemp. Math. 152, pp. 43–68.

    Google Scholar 

  26. J. Franks and D. Fried, “The Lefschetz Function of a Point,” in Topological Fixed Point Theory and Applications (Springer, Berlin, 1989), Lect. Notes Math. 1411, pp. 83–87.

    Chapter  Google Scholar 

  27. P. R. Heath, R. Piccinini, and C. You, “Nielsen-Type Numbers for Periodic Points. I,” in Topological Fixed Point Theory and Applications (Springer, Berlin, 1989), Lect. Notes Math. 1411, pp. 88–106.

    Chapter  Google Scholar 

  28. H. Hopf, “Über die algebraische Anzahl von Fixpunkten,” Math. Z. 29, 493–524 (1929).

    Article  MATH  MathSciNet  Google Scholar 

  29. W. Jänichen, “Über die Verallgemeinerung einer Gaussschen Formel aus der Theorie der höheren Kongruenzen,” Sitzungsber. Berlin. Math. Ges. 20, 23–29 (1921).

    Google Scholar 

  30. N. Koblitz, p-Adic Numbers, p-adic Analysis, and Zeta-Functions (Springer, New York, 1977; Mir, Moscow, 1982).

    MATH  Google Scholar 

  31. K. Komiya, “Congruences for Fixed Point Indices of Equivariant Maps and Iterated Maps,” in Topological Fixed Point Theory and Applications (Springer, Berlin, 1989), Lect. Notes Math. 1411, pp. 130–136.

    Chapter  Google Scholar 

  32. K. Komiya, “Fixed Point Indices of Equivariant Maps and Möbius Inversion,” Invent. Math. 91, 129–135 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  33. M. A. Krasnosel’skii and P. P. Zabreiko, Geometrical Methods of Nonlinear Analysis (Nauka, Moscow, 1975; Springer, Berlin, 1984).

    Google Scholar 

  34. S. Lang, Algebraic Numbers (Addison-Wesley, Reading, MA, 1964; Mir, Moscow, 1966).

    MATH  Google Scholar 

  35. J. Petersen, Tiddskr. Mat. (3), 2, 2, 64–65 (1872).

    Google Scholar 

  36. T. Schönemann, “Grundzüge einer allgemeinen Theorie der höhern Congruenzen, deren Modul eine reelle Primzahl ist,” J. Reine Angew. Math. 31, 269–325 (1846).

    MATH  Google Scholar 

  37. I. Schur, “Arithmetische Eigenschaften der Potenzsummen einer algebraischen Gleichung,” Compos. Math. 4, 432–444 (1937).

    MATH  MathSciNet  Google Scholar 

  38. J.-P. Serre, Corps locaux (Hermann, Paris, 1962).

    MATH  Google Scholar 

  39. M. Shub and D. Sullivan, “A Remark on the Lefschetz Fixed Point Formula for Differentiable Maps,” Topology 13, 189–191 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  40. S. Smale, “Differentiable Dynamical Systems,” Bull. Am. Math. Soc. 73, 747–817 (1967).

    Article  MathSciNet  Google Scholar 

  41. C. J. Smyth, “A Coloring Proof of a Generalization of Fermat’s Little Theorem,” Am. Math. Mon. 93(6), 469–471 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  42. E. H. Spanier, Algebraic Topology (McGraw-Hill, New York, 1966; Mir, Moscow, 1971).

    MATH  Google Scholar 

  43. T. Szele, “Une généralisation de la congruence de Fermat,” Mat. Tidsskr. B, 57–59 (1948).

  44. A. Thue, “Ein Kombinatorischer Beweis eines Satzes von Fermat,” Christiana Vid. Selsk. Skr. I. Mat. Nat. Kl., No. 3 (1910); repr. in Selected Mathematical Papers of Axel Thue (Universitelsforlaget, Oslo, 1977).

  45. H. Ulrich, Fixed Point Theory of Parametrized Equivariant Maps (Springer, Berlin, 1988), Lect. Notes Math. 1343.

    MATH  Google Scholar 

  46. E. B. Vinberg, “Fermat’s Little Theorem and Its Generalizations,” Mat. Prosveshch., Ser. 3, No. 12, 1–11 (2008).

  47. I. M. Vinogradov, Foundations of Number Theory (Nauka, Moscow, 1981) [in Russian].

    MATH  Google Scholar 

  48. J. Westlund, Proc. Indiana Acad. Sci., 78–79 (1902).

  49. P. Wong, “Equivariant Nielsen Fixed Point Theory for G-Maps,” Pac. J. Math. 150(1), 179–200 (1991).

    MATH  Google Scholar 

  50. P. Wong, “Equivariant Nielsen Numbers,” Pac. J. Math. 159(1), 153–175 (1993).

    Google Scholar 

  51. P. P. Zabreiko and M. A. Krasnosel’skii, “Iterations of Operators and Fixed Points,” Dokl. Akad. Nauk SSSR 196(5), 1006–1009 (1971) [Sov. Math., Dokl. 12, 294–298 (1971)].

    MathSciNet  Google Scholar 

  52. P. P. Zabreiko and M. A. Krasnosel’skii, “The Rotation of Vector Fields with Compositions and Iterations of Operators,” Vestn. Yaroslav. Univ., No. 12, 23–37 (1975).

  53. A. V. Zarelua, “On Matrix Analogs of Fermat’s Little Theorem,” Mat. Zametki 79(6), 838–853 (2006) [Math. Notes 79, 783–796 (2006)].

    MathSciNet  Google Scholar 

  54. O. Zariski and P. Samuel, Commutative Algebra (D. Van Nostrand, Princeton, NJ, 1958, 1960; Inostrannaya Literatura, Moscow, 1963), Vols. 1, 2.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Zarelua.

Additional information

Original Russian Text © A.V. Zarelua, 2008, published in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2008, Vol. 263, pp. 85–105.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zarelua, A.V. On congruences for the traces of powers of some matrices. Proc. Steklov Inst. Math. 263, 78–98 (2008). https://doi.org/10.1134/S008154380804007X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S008154380804007X

Keywords

Navigation