Skip to main content
Log in

FTIR spectroscopic studies of interactions of stilbenes with silicon dioxide

  • Molecular and Supramolecular Structures at the Interfaces
  • Published:
Protection of Metals Aims and scope Submit manuscript

Abstract

Adsorption interactions of trans-stilbene and its hydroxy and methoxy derivatives with the surface of nanodispersed SiO2 aerogel were studied by diffuse-reflection FTIR spectroscopy. Stilbenes were found to adsorb at the aerosil via hydrogen bonding to silanol OH groups. The deepest modification of these groups was produced by 3,5,4′-trihydroxystilbene (resveratrol). Although the stilbenes adsorbed reversibly, the absorption spectra of the starting and desorbed resveratrol proved to differ. UV irradiation (λ = 285–305 nm) of adsorbed hydroxystilbenes changed the composition and properties of adsorbed layers. The changes include breaking of the hydrogen bonds between the hydroxystilbene molecules and the surface, destruction of the stilbenes involving cleavage of the double bond of the ethene fragment, dimerization, oxidation, and transformation into other compounds. The intensity of heterogeneous photolysis depends on the number and composition of functional groups in trans-stilbenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Golovkin, B.N., Rudenskaya, R.N., Trofimova, I.A., et al., Biologicheski aktivnye veshchestva rastitel’nogo proiskhozhdeniya (Biologically Active Compounds of Plant Origin), 3 vols., Moscow: Nauka, 2001.

    Google Scholar 

  2. Jang, M., Cai, L., Udeani, G.O., et al., Science, 1997, vol. 275, p. 218.

    Article  CAS  Google Scholar 

  3. King, R., Bomser, J.A., and Min, D.B., Comp. Rev. Food Sci. Food Saf., 2006, vol. 5, no. 3, p. 65.

    Article  CAS  Google Scholar 

  4. Waldeck, D.H., Chem. Rev., 1991, vol. 91, p. 415.

    Article  CAS  Google Scholar 

  5. Papper, V. and Likhtenshtein, G.I., J. Photochem. Photobiol., A, 2001, vol. 140, p. 39.

    Article  CAS  Google Scholar 

  6. Minkin, V.I., Ross. Khim. Zh. (Zh. Ross. Khim. O-va. im. D.I. Mendeleeva), 2000, vol. 45, no. 6, p. 3.

    Google Scholar 

  7. Mayer, T.S., Mallouk, T.E., and Natan, M.J., Adv. Mater., 1999, vol. 11, p. 1021.

    Article  Google Scholar 

  8. Larin, A.V. and Polunin, K.E., Sorbts. Khromatogr. Protsessy, 2003, vol. 3,issue 3, p. 268.

    Google Scholar 

  9. Polunin, K.E., Polunina, I.A., and Roldugin, V.I., Sorbts. Khromatogr. Protsessy, 2003, vol. 3,issue 5, p. 567.

    Google Scholar 

  10. Polunin, K.E., Kolotilov, P.N., and Polunina, I.A., Sorbts. Khromatogr. Protsessy, 2007, vol. 7,issue 1, p. 28.

    Google Scholar 

  11. Kolotilov, P.N., Shepelev, B.N., Polunina, I.A., et al., Sorbts. Khromatogr. Protsessy, 2005, vol. 5,issue 1, p. 82.

    Google Scholar 

  12. Bellamy, L., Advances in Infrared Group Frequences, Bungay, 1968.

  13. Kiselev, A.V. and Lygin, V.I., Infrakrasnye spektry poverkhnostnykh soedinenii (Infrared Spectra of Surface Compounds), Moscow: Nauka, 1972.

    Google Scholar 

  14. Vibrational Spectra and Structure, During, I.R., Ed., New York: Elsevier, 1986, vol. 16.

    Google Scholar 

  15. Smith, A., Applied Infrared Spectroscopy: Fundamentals, Techniques, and Analytical Problem-Solving, New York: Wiley, 1979.

    Google Scholar 

  16. Molina, V., Merchan, M., and Roos, B.O., Spectrochim. Acta, A, 1999, vol. 55, no. 3, p. 433.

    Article  Google Scholar 

  17. Tyukavkina, N.A., Gromova, A.S., Lutskii, V.I., et al., Khim. Prir. Soedin., 1972, vol. 8, no. 5, p. 600.

    Google Scholar 

  18. Pere, E., Cardy, H., Cairon, O., et al., Vib. Spectrosc., 2001, vol. 25, no. 2, p. 163.

    Article  CAS  Google Scholar 

  19. Iler, R.K., The Chemistry of Silica, New York: Wiley, 1979.

    Google Scholar 

  20. Sigman, M.E., Barbas, J.T., Corbett, S., et al., J. Photochem. Photobiol., A, 2001, vol. 138, p. 269.

    Article  CAS  Google Scholar 

  21. Potapov, V.M., Stereokhimiya (Stereochemistry), Moscow: Khimiya, 1988, p. 116.

    Google Scholar 

  22. Tertykh, V.A. and Belyakova, L.A., Khimicheskie reaktsii s uchastiem poverkhnosti kremnezema (Chemical Reactions Involving the Silica Surface), Kiev: Naukova Dumka, 1991, p. 5.

    Google Scholar 

  23. Li, W., Li, B., and Chen, Y., Phytochemistry, 1998, vol. 49, no. 5, p. 1393.

    Article  CAS  Google Scholar 

  24. Meier, H., Angew. Chem., Int. Ed., 1992, vol. 31, p. 1399.

    Article  Google Scholar 

  25. Nurmukhametov, R.N., Pogloshchenie i lyuminestsentsiya aromaticheskikh soedinenii (Absorption and Luminescence of Arenes), Moscow: Khimiya, 1971, p. 57.

    Google Scholar 

  26. Kremnezemy v meditsine i biologii (Silicas in Medicine and Biology), Chuiko, A.A., Ed., Kiev: Stavropol’, 1993, p. 3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Polunina.

Additional information

Original Russian Text © K.E. Polunin, N.P. Sokolova, A.M. Gorbunov, R.A. Bulgakova, I.A. Polunina, 2008, published in Fizikokhimiya Poverkhnosti i Zashchita Materialov, 2008, Vol. 44, No. 4, pp. 378–384.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polunin, K.E., Sokolova, N.P., Gorbunov, A.M. et al. FTIR spectroscopic studies of interactions of stilbenes with silicon dioxide. Prot Met 44, 352–357 (2008). https://doi.org/10.1134/S0033173208040061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0033173208040061

PACS numbers

Navigation