Skip to main content
Log in

Molecular basis of Parkinsons’s disease linked to LRRK2 mutations

  • Reveiws
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a common neurodegenerative disorder whose symptoms are consistent with death of dopaminergic neurons in the substantia nigra of the brain. The pathogenesis of PD involves several factors, such as α-synuclein aggregation, oxidative stress, mitochondrial dysfunction, and activation of apoptosis, but the exact molecular mechanism of neurodegeneration remains obscure. PD is usually sporadic, while rare monogenic forms have been identified and described in the past 15 years. Familial Parkinson’s disease is most commonly associated with mutations of the leucine repeat-rich kinase 2 gene (LRRK2). The mechanism of the disease due to LRRK2 mutations is unknown. The signaling cascades regulated by LRRK2 are difficult to study because the physiological substrates of the enzyme are unidentified. The G2019S substitution has been found to be the most common LRRK2 mutation, facilitating a search for patients with LRRK2-associated PD in various populations. The review considers the effects of LRRK2 mutations on protein and, in particular, α-synuclein aggregation, cytoskeletal dynamics, the inflammatory response, and the induction of apoptosis as revealed in both in vitro experiments and studies in PD patients. Investigation of rare hereditary PD forms with known etiology provides for a better understanding of the mechanism of neurodegeneration in more common sporadic PD forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Illarioshkin S.N. 2002. Konformatsionnye bolezni mozga (Conformational Diseases of the Brain). Moscow: Yanus-K.

    Google Scholar 

  2. Shadrina M.I., Slominsky P.A. 2008. Mitochondrial dysfunction and oxidative damage in the molecular pathology of Parkinson’s disease. Mol. Biol. (Moscow). 42, 720–728.

    Article  CAS  Google Scholar 

  3. Cookson M.R., Bandmann O. 2010. Parkinson’s disease: Insights from pathways. Hum. Mol. Genet. 19(R1), R21–R27.

    Article  CAS  PubMed  Google Scholar 

  4. Levy O.A., Malagelada C., Greene L.A. 2009. Cell death pathways in Parkinson’s disease: Proximal triggers, distal effectors, and final steps. Apoptosis. 14(4), 478–500.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Mizushima N., Levine B., Cuervo A.M., Klionsky D.J. 2008. Autophagy fights disease through cellular selfdigestion. Nature. 451(7182), 1069–1075.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Bekris L.M., Mata I.F., Zabetian C.P. 2010. The genetics of Parkinson’s disease. J. Geriatr. Psychiatry Neurol. 23, 228–242.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Hardy J. 2010. Genetics analysis of pathways to Parkinson’s disease. Neuron. 68, 201–206.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Ozelius L.J., Senthil G., Suanders-Pullman R., Ohmann E., Deligtisch A., Tagliati M., Hunt A.L., Klein C., Henick B., Hailpern S.M., Lipton R.B., Soto-Valencia J., Risch N., Bressman S. 2006. LRRK2 G2019S as a cause of Parkinson’s disease in Ashkenazi Jewish. N. Engl. J. Med. 354, 424–425.

    Article  CAS  PubMed  Google Scholar 

  9. Lesage S., Dürr A., Tazir M., Lohmann E., Leutenegger A.L., Janin S., Pollak P., Brice A., French Parkinson’s Disease Genetics Study Group. 2006. LRRK2 G2019S as a cause of Parkinson’s disease in North African Arabs. New Engl. J. Med. 354, 422–423.

    Article  CAS  PubMed  Google Scholar 

  10. Funayama M., Hasegawa K., Kowa H., Saito M., Tsuji S., Obata F. 2002. A new locus for Parkinson’s disease (PARK8) maps to chromosome 12p11.2–p13.1. Ann. Neurol. 51, 296–301.

    Article  CAS  PubMed  Google Scholar 

  11. Paisan-Ruiz C., Jain S., Evans E.W., Gilks W., Simón J., van der Brug M., de Munain A., Aparicio S., Gil A., Khan N. 2004. Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron. 44, 595–600.

    Article  CAS  PubMed  Google Scholar 

  12. Zimprich A., Biskup S., Leitner P., Farrer M., Lincoln S., Kachergus J., Hulihan M., Uitti R., Calne D. 2004. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron. 44, 601–607.

    Article  CAS  PubMed  Google Scholar 

  13. Greggio E., Cookson M.R. 2009. Leucine-rich repeat kinase 2 mutations and Parkinson’s disease: Three questions. ASN Neuro. 1(1), e00002.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Greggio E. 2012. Role of LRRK2 kinase activity in the pathogenesis of Parkinson’s disease. Biochem. Soc. Trans. 40(5), 1058–1062.

    Article  CAS  PubMed  Google Scholar 

  15. Giasson B.I., van Deerlin V.M. 2008. Mutations in LRRK2 as a cause of Parkinson’s disease. Neurosignals. 16, 99–105.

    Article  CAS  PubMed  Google Scholar 

  16. Tan E.K., Shen H., Tan L.C., Farrer M., Yew K., Chua E., Jamora R.D., Puvan K., Puong K.Y., Zhao Y., Pavanni R., Wong M.C., Yih Y., Skipper L., Liu J.J. 2005. Lack of G2019S LRRK2 mutation in a cohort of Taiwanese with sporadic Parkinson’s disease. Neurosci. Lett. 384(3), 327–329.

    Article  CAS  PubMed  Google Scholar 

  17. Fung H.C., Chen C.M., Hardy J., Hernandez D., Singleton A., Wu Y.R. 2006. Lack of G2019S LRRK2 mutation in a cohort of Taiwanese with sporadic Parkinson’s disease. Mov. Disord. 21, 880–881.

    Article  PubMed  Google Scholar 

  18. Shulman J.M., DeJager P.L., Feany M.B. 2011. Parkinson’s disease: Genetics and pathogenesis. Ann. Rev. Pathol. Mech. 6, 193–222.

    Article  CAS  Google Scholar 

  19. Lee E., Hui S., Ho G., Tan E.K., Chen C.P. 2006. LRRK2 G2019S and I2020T mutations are not common in Alzheimer’s disease and vascular dementia. Am. J. Med. Genet. B Neuropsychiatr. Genet. 141B(5), 549–550.

    Article  CAS  PubMed  Google Scholar 

  20. Whittle A.J., Ross O.A., Naini A., Gordon P., Mistumoto H., Dächsel J.C., Stone J.T., Wszolek Z.K., Farrer M.J., Przedborski S. 2007. Pathogenic Lrrk2 substitutions and amyotrophic lateral sclerosis. J. Neural Transm. 114(3), 327–329.

    Article  CAS  PubMed  Google Scholar 

  21. Chang T.Y., Kuo H.C., Lu C.S., Wu-Chou Y.H., Huang C.C. 2010. Analysis of the LRRK2 Gly2385Arg variant in Alzheimer’s disease in Taiwan. Parkinson. Relat. Disord. 1, 28–30.

    Article  Google Scholar 

  22. Lesage S., Brice A. 2009. Parkinson’s disease: From monogenic forms to genetic susceptibility factors. Hum. Mol. Genet. 18(R1), R48–R45.

    Article  CAS  PubMed  Google Scholar 

  23. Simón-Sánchez J., Martí-Massó J.F., Sánchez-Mut J.V., Paisán-Ruiz C., Martínez-Gil A., Ruiz-Martínez J., Sáenz A., Singleton A.B., López de Munain A., PérezTur J. 2006. Parkinson’s disease due to the R1441G mutation in Dardarin: A founder effect in the Basques. Mov. Disord. 21(11), 1954–1959.

    Article  PubMed  Google Scholar 

  24. Pchelina S.N., Yakimovskii A.F., Emelyanov A.K., Ivanova O.N., Schwarzman A.L., Singleton A.B. 2008. Screening for LRRK2 mutations in patients with Parkinson’s disease in Russia: Identification of a novel LRRK2 variant. Eur. J. Neurol. 5, 692–696.

    Article  Google Scholar 

  25. Pchelina S.N., Ivanova O.N., Emelyanov A.K., Yakimovskii A.F., Schwarzman A.L. 2006. LRRK2 mutations in patients with Parkinson’s disease in Russia. Med. Genet. 5(2), 48–51.

    Google Scholar 

  26. Pchelina S.N., Yakimovskii A.F., Ivanova O.N., Emelianov A.K., Zakharchuk A.H., Schwarzman A.L. 2006. G2019S LRRK2 mutation in familial and sporadic Parkinson’s disease in Russia. Mov. Disord. 21(12), 2234–2236.

    Article  PubMed  Google Scholar 

  27. Pchelina S.N., Ivanova O.N., Emelianov A.K., Yakimovskii A.F. 2011. Clinical progression of LRRK2-associated Parkinson’s disease. Zh. Nevrol. Psikhiatr. im. S.S. Korsakova. 111(12), 56–62.

    CAS  PubMed  Google Scholar 

  28. Paisan-Ruiz C., Lang A.E., Kawarai T., Sato C., Salehi-Rad S., Fisman G.K., Al-Khairallah T., St. George-Hyslop P., Singleton A., Rogaeva E. 2005. LRRK2 gene in Parkinson’s disease: Mutation analysis and case control association study. Neurology. 65(5), 696–700.

    Article  CAS  PubMed  Google Scholar 

  29. Lesage S., Belarbi S., Troiano A., Condroyer C., Hecham N., Pollak P., Lohman E., Benhassine T., Ysmail-Dahlouk F., Dürr A., Tazir M., Brice A; French Parkinson’s Disease Genetics Study Group. 2008. Is the common LRRK2 G2019S mutation related to dyskinesias in North African Parkinson disease? Neurology. 71(19), 1550–1552.

    Article  CAS  PubMed  Google Scholar 

  30. Nishioka K., Kefi M., Jasinska-Myga B., Wider C., Vilariño-Güell C., Ross O.A., Heckman M.G., Middleton L.T., Ishihara-Paul L., Gibson R.A., Amouri R., Ben Yahmed S., Ben Sassi S., Zouari M., El Euch G., Farrer M.J., Hentati F. 2010. A comparative study of LRRK2, PINK1 and genetically undefined familial Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry. 81(4), 391–395.

    Article  PubMed  Google Scholar 

  31. Greggio E., Zambrano I., Kaganovich A., Beilina A., Taymans J.M., Daniels V., Lewis P., Jain S., Ding J., Syed A., Thomas K.J., Baekelandt V., Cookson M.R. 2008. The Parkinson disease-associated leucine-rich repeat kinase 2 (LRRK2) is a dimer that undergoes intramolecular autophosphorylation. J. Biol. Chem. 283, 16906–16914.

    Article  CAS  PubMed  Google Scholar 

  32. Hsu C.H., Chan D., Wolozin B. 2010. LRRK2 and the stress response: Interaction with MKKs and JNK-interacting proteins. Neurodegener. Dis. 7(1–3), 68–75.

    Article  CAS  PubMed  Google Scholar 

  33. Smith W.W., Pei Z., Jiang H., Dawson V.L., Dawson T.M., Ross C.A. 2006. Kinase activity of mutant LRRK2 mediates neuronal toxicity. Nature Neurosci. 9, 1231–1233.

    Article  CAS  PubMed  Google Scholar 

  34. Jaleel M., Nichols R.J., Deak M., Campbell D.G., Gillardon F., Knebel A., Alessi D.R. 2007. LRRK2 phosphorylates moesin at threonine-558: characterization of how Parkinson’s disease mutants affect kinase activity. Biochem. J. 405, 307–317.

    Article  CAS  PubMed  Google Scholar 

  35. West A.B., Moore D.J., Choi C., Andrabi S.A., Li X., Dikeman D., Biskup S., Zhang Z., Lim K.L., Dawson V.L., Dawson, T.M. 2007. Parkinson’s diseaseassociated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity. Hum. Mol. Genet. 16, 223–232.

    Article  CAS  PubMed  Google Scholar 

  36. Xiong Y., Coombes C.E., Kilaru A., Li X., Gitler A.D., Bowers W.J., Dawson V.L., Dawson T.M., Moore D.J. 2010. GTPase activity plays a key role in the pathobiology of LRRK2. PLoS Genet. 6(4), e1000902.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Cookson M.R. Cellular effects of LRRK2 mutations. 2012. Biochem. Soc. Trans. 40(5), 1070–1073.

    Article  CAS  PubMed  Google Scholar 

  38. Macleod D., Dowman J., Hammond R., Leete T., Inoue K., Abeliovich A. 2006. The familial Parkinsonism gene LRRK2 regulates neurite process morphology. Neuron. 52(4), 587–593.

    Article  CAS  PubMed  Google Scholar 

  39. Lee B.D., Shin J.H., VanKampen J., Petrucelli L., West A.B., Ko H.S., Lee Y.I., Maguire-Zeiss K.A., Bowers W.J., Federoff H.J., Dawson V.L., Dawson T.M. 2010. Inhibitors of leucine-rich repeat kinase-2 protect against models of Parkinson’s disease. Nature Med. 16(9), 998–1000.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Daniëls V., Vancraenenbroeck R., Law B.M., Greggio E., Lobbestael E., Gao F., De Maeyer M., Cookson M.R., Harvey K., Baekelandt V., Taymans J.M. 2011. Insight into the mode of action of the LRRK2 Y1699C pathogenic mutant. J. Neurochem. 116(2), 304–315.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Rudenko I.N., Kaganovich A., Hauser D.N., Beylina A., Chia R., Ding J., Maric D., Jaffe H., Cookson M.R. 2012. The G2385R variant of leucine-rich repeat kinase 2 associated with Parkinson’s disease is a partial loss-of-function mutation. Biochem. J. 446(1), 99–111.

    Article  CAS  PubMed  Google Scholar 

  42. Spillantini M.G., Schmidt M.L., Lee V.M.Y., Trojanowski J.Q., Jakes R., Goedert M. 1997. Alpha-synuclein in Lewy bodies. Nature. 388, 839–840.

    Article  CAS  PubMed  Google Scholar 

  43. Cookson M.R. 2010. The role of leucine-rich repeat kinase 2 (LRRK2) in Parkinson’s disease. Nature Rev. Neurosci. 11(12), 791–797.

    Article  CAS  Google Scholar 

  44. Fujiwara H., Hasegawa M., Dohmae N., Kawashima A., Masliah E., Goldberg M.S., Shen J., Takio K., Iwatsubo T. 2002. Alpha-synuclein is phosphorylated in synucleinopathy lesions. Nature Cell Biol. 4(2), 160–164.

    CAS  PubMed  Google Scholar 

  45. Alegre-Abarrategui J., Ansorge O., Esiri M., WadeMartins R. 2008. LRRK2 is a component of granular alpha-synuclein pathology in the brainstem of Parkinson’s disease. Neuropathol. Appl. Neurobiol. 34(3), 272–283.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Vitte J., Traver S., Maues De Paula A., Lesage S., Rovelli G., Corti O., Duyckaerts C., Brice A. 2010. Leucine-rich repeat kinase 2 is associated with the endoplasmic reticulum in dopaminergic neurons and accumulates in the core of Lewy bodies in Parkinson disease. J. Neuropathol. Exp. Neurol. 69(9), 959–972.

    Article  CAS  PubMed  Google Scholar 

  47. Qing H., Wong W., McGeer E.G., McGeer P.L. 2009. LRRK2 phosphorylates alpha synuclein at serine 129: Parkinson disease implications. Biochem. Biophys. Res. Commun. 387(1), 149–152.

    Article  CAS  PubMed  Google Scholar 

  48. Nichols R.J., Dzamko N., Morrice N.A., Campbell D.G., Deak M., Ordureau A., Macartney T., Tong Y., Shen J., Prescott A.R., Alessi D.R. 2010. 14-3-3 binding to LRRK2 is disrupted by multiple Parkinson’s diseaseassociated mutations and regulates cytoplasmic localization. Biochem. J. 430(3), 393–404.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Dzamko N., Deak M., Hentati F., Reith A.D., Prescott A.R., Alessi D.R., Nichols R.J. 2010. Inhibition of LRRK2 kinase activity leads to dephosphorylation of Ser(910)/Ser(935), disruption of 14-3-3 binding and altered cytoplasmic localization. Biochem. J. 430(3), 405–413.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Lin X., Parisiadou L., Gu X.L., Wang L., Shim H., Sun L., Xie C., Long C.X., Yang W.J., Ding J., Chen Z.Z., Gallant P.E., Tao-Cheng J.H., Rudow G., Troncoso J.C., Liu Z., Li Z., Cai H. 2009. Leucine-rich repeat kinase 2 regulates the progression of neuropathology induced by Parkinson’s-disease-related mutant alpha-synuclein. Neuron. 64(6), 807–827.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Li Y., Liu W., Oo T.F., Wang L., Tang Y., Jackson-Lewis V., Zhou C., Geghman K., Bogdanov M., Przedborski S., Beal M.F., Burke R.E., Li C. 2009. Mutant LRRK2 (R1441G) BAC transgenic mice recapitulate cardinal features of Parkinson’s disease. Nature Neurosci. 12(7), 826–828.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Shin N., Jeong H., Kwon J., Heo H.Y., Kwon J.J., Yun H.J., Kim C.H., Han B.S., Tong Y., Shen J., Hatano T., Hattori N., Kim K.S., Chang S., Seol W. 2008. LRRK2 regulates synaptic vesicle endocytosis. Exp. Cell Res. 314(10), 2055–2065.

    Article  CAS  PubMed  Google Scholar 

  53. Parisiadou L., Xie C., Cho H.J., Lin X., Gu X.L., Long C.X., Lobbestael E., Baekelandt V., Taymans J.M., Sun L., Cai H. 2009. Phosphorylation of ezrin/radixin/moesin proteins by LRRK2 promotes the rearrangement of actin cytoskeleton in neuronal morphogenesis. J. Neurosci. 29(44), 13971–13980.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Gillardon F. 2009. Leucine-rich repeat kinase 2 phosphorylates brain tubulin-beta isoforms and modulates microtubule stability: A point of convergence in parkinsonian neurodegeneration? J. Neurochem. 110(5), 1514–1522.

    Article  CAS  PubMed  Google Scholar 

  55. Melrose H.L., Dächsel J.C., Behrouz B., Lincoln S.J., Yue M., Hinkle K.M., Kent C.B., Korvatska E., Taylor J.P., Witten L., Liang Y.Q., Beevers J.E., Boules M., Dugger B.N., Serna V.A., Gaukhman A., Yu X., Castanedes-Casey M., Braithwaite A.T., Ogholikhan S., Yu N., Bass D., Tyndall G., Schellenberg G.D., Dickson D.W., Janus C., Farrer M.J. 2010. Impaired dopaminergic neurotransmission and microtubule-associated protein tau alterations in human LRRK2 transgenic mice. Neurobiol. Dis. 40(3), 503–517.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Covy J.P., Yuan W., Waxman E.A., Hurtig H.I., van Deerlin V.M., Giasson B.I. 2009. Clinical and pathological characteristics of patients with leucine-rich repeat kinase-2 mutations. Mov. Disord. 24(1), 32–39.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Taymans J., Cookson M.R. 2010. Mechanisms in dominant parkinsonism: The toxic triangle of LRRK2, alpha-synuclein, and tau. BioEssays. 32, 227–235.

    Article  CAS  PubMed  Google Scholar 

  58. Tong Y., Yamaguchi H., Giaime E., Boyle S., Kopan R., Kelleher R.J., Shen J. 2010. Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of alpha-synuclein, and apoptotic cell death in aged mice. Proc. Natl. Acad. Sci. U. S. A. 107(21), 9879–9884.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Alegre-Abarrategui J., Christian H., Lufino M., Mutihac R., Venda L.L., Ansorge O., Wade-Martins R. 2009. LRRK2 regulates autophagic activity and localizes to specific membrane microdomains in a novel human genomic reporter cellular model. Hum. Mol. Genet. 18(21), 4022–4034.

    Article  CAS  PubMed  Google Scholar 

  60. Plowey E.D., Cherra S.J. 3rd, Liu Y.J., Chu C.T. 2008. Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells. J. Neurochem. 105(3), 1048–1056.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. White L.R., Toft M., Kvam S.N., Farrer M.J., Aasly J.O. 2007. MAPK-pathway activity, Lrrk2 G2019S, and Parkinson’s disease. J. Neurosci. Res. 85, 1288–1294.

    Article  CAS  PubMed  Google Scholar 

  62. Pchelina S.N., Emelyanov A.K., Yakimovskii A.F., Miller D.W., Shabalina I.G., Drozdova A.S., Schwarzman A.L. 2010. Reduced content of α-synuclein in peripheral blood leukocytes of patients with LRRK2-associated Parkinson’s disease. Bull. Exp. Biol. Med. 150(6), 679–681.

    Article  Google Scholar 

  63. Andoskin P.A., Emelyanov A.K., Yakimovsky A.F., Timofeeva A.A., Pchelina S.N. 2013. Oligomeric alpha-synuclein levels in blood plasma in LRRK2-linked Parkinson’s disease. J. Hum. Genet. 21(Suppl. 2), 513.

    Google Scholar 

  64. Gorostidi A., Bergareche A., Ruiz-Martínez J., MartiMassó J.F., Cruz M., Varghese S., Qureshi M.M., Alzahmi F., Al-Hayani A., de Munáin A.L., El-Agnaf O.M. 2012. α-Synuclein levels in blood plasma from LRRK2 mutation carriers. PLoS ONE. 7(12), e52312.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Park M.J., Cheon S.M., Bae H.R., Kim S.H., Kim J.W. 2011. Elevated levels of α-synuclein oligomer in the cerebrospinal fluid of drug-naïve patients with Parkinson’s disease. J. Clin. Neurol. 7(4), 215–222.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Foulds P.G., Mitchell J.D., Parker A., Turner R., Green G., Diggle P., Hasegawa M., Taylor M., Mann D., Allsop D. 2011. Phosphorylated α-synuclein can be detected in blood plasma and is potentially a useful biomarker for Parkinson’s disease. FASEB J. 25(12), 4127–4137.

    Article  CAS  PubMed  Google Scholar 

  67. Pchelina S.N. 2011. Alpha-synuclein as a biomarker of Parkinson’s disease. Ann. Klin. Eksp. Nevrol. 6, 46–51.

    Google Scholar 

  68. Zhao Y., Ho P., Yih Y., Chen C., Lee W.L., Tan E.K. 2011. LRRK2 variant associated with Alzheimer’s disease. Neurobiol. Aging. 32(11), 1990–1993.

    Article  CAS  PubMed  Google Scholar 

  69. Li H.L., Lu S.J., Sun Y.M., Guo Q.H., Sadovnick A.D., Wu Z.Y. 2013. The LRRK2 R1628P variant plays a protective role in Han Chinese population with Alzheimer’s disease. CNS Neurosci. Ther. 19(4), 207–215.

    Article  PubMed  Google Scholar 

  70. Greggio E., Civiero L., Bisaglia M., Bubacco L. 2012. Parkinson’s disease and immune system: Is the culprit LRRKing in the periphery? J. Neuroinflamm. 9, 94.

    Article  CAS  Google Scholar 

  71. Hakimi M., Selvanantham T., Swinton E., Padmore R.F., Tong Y., Kabbach G., Venderova K., Girardin S.E., Bulman D.E., Scherzer C.R., LaVoie M.J., Gris D., Park D.S., Angel J.B., Shen J., Philpott D.J., Schlossmacher M.G. 2011. Parkinson’s disease-linked LRRK2 is expressed in circulating and tissue immune cells and upregulated following recognition of microbial structures. J. Neural Transm. 118(5), 795–808.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Gardet A., Benita Y., Li C., Sands B.E., Ballester I., Stevens C., Korzenik J.R., Rioux J.D., Daly M.J., Xavier R.J., Podolsky D.K. 2010. LRRK2 is involved in the IFN-gamma response and host response to pathogens. J. Immunol. 185(9), 5577–5585.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Schroder K., Hertzog P.J., Ravasi T., Hume D.A. 2004. Interferon-gamma: An overview of signals, mechanisms and functions. J. Leukoc. Biol. 75(2), 163–189.

    Article  CAS  PubMed  Google Scholar 

  74. Liu Z., Lee J., Krummey S., Lu W., Cai H., Lenardo M.J. 2011. The kinase LRRK2 is a regulator of the transcription factor NFAT that modulates the severity of inflammatory bowel. Nature Immunol. 12(11), 1063–1070.

    Article  CAS  Google Scholar 

  75. Gillardon F., Schmid R., Draheim H. 2012. Parkinson’s disease-linked leucine-rich repeat kinase 2 (R1441G) mutation increases proinflammatory cytokine release from activated primary microglial cells and resultant neurotoxicity. Neuroscience. 208, 41–48.

    Article  CAS  PubMed  Google Scholar 

  76. Moehle M.S., Webber P.J., Tse T., Sukar N., Standaert D.G., DeSilva T.M., Cowell R.M., West A.B. 2012. LRRK2 inhibition attenuates microglial inflammatory responses. J. Neurosci. 32(5), 1602–1611.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Iaccarino C., Crosio C., Vitale C., Sanna G., Carrì M.T., Barone P. 2007. Apoptotic mechanisms in mutant LRRK2-mediated cell death. Hum. Mol. Genet. 16(11), 1319–1326.

    Article  CAS  PubMed  Google Scholar 

  78. Milosevic J., Schwarz S.C., Ogunlade V., Meyer A.K., Storch A., Schwarz J. 2009. Emerging role of LRRK2 in human neural progenitor cell cycle progression, survival and differentiation. Mol. Neurodegener. 4, 25.

    Article  PubMed Central  PubMed  Google Scholar 

  79. Ho C.C., Rideout H.J., Ribe E., Troy C.M., Dauer W.T. 2009. The Parkinson disease protein leucine-rich repeat kinase 2 transduces death signals via Fas-associated protein with death domain and caspase-8 in a cellular model of neurodegeneration. J. Neurosci. 29(4), 1011–1016.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Vila M., Ramonet D., Perier C. 2008. Mitochondrial alterations in Parkinson’s disease: New clues. J. Neurochem. 107(2), 317–328.

    Article  CAS  PubMed  Google Scholar 

  81. Ohta E., Kubo M., Obata F. 2010. Prevention of intracellular degradation of I2020T mutant LRRK2 restores its protectivity against apoptosis. Biochem. Biophys. Res. Commun. 391(1), 242–247.

    Article  CAS  PubMed  Google Scholar 

  82. Usenko T.S., Emelyanov A.K., Yakimovskii A.F., Bogankova N.A., Vavilova T.V., Schwarzman A.L., Pchelina S.N. 2012. Apoptosis of peripheral blood lymphocytes in patients with LRRK2-associated Parkinson’s disease. Cell Tissue Biol. 6(2), 171–175

    Article  Google Scholar 

  83. Gómez-Suaga P., Fdez E., Blanca Ramírez M., Hilfiker S. 2012. A link between autophagy and the pathophysiology of LRRK2 in Parkinson’s disease. Parkinson’s Dis. 2012, 324521. doi 10.1155/2012/324521

    Google Scholar 

  84. Saunders-Pullman R., Barrett M.J., Stanley K.M., Luciano M.S., Shanker V., Severt L., Hunt A., Raymond D., Ozelius L.J., Bressman S.B. 2010. LRRK2 G2019S mutations are associated with an increased cancer risk in Parkinson disease. Mov. Disord. 25(15), 2536–2541.

    Article  PubMed Central  PubMed  Google Scholar 

  85. Bandmann O., Cookson M.R. 2012. Parkinson disease, cancer, and LRRK2: Causation or association? Neurology. 78(11), 772–773.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Pchelina.

Additional information

Original Russian Text © S.N. Pchelina, A.K. Emelyanov, T.S. Usenko, 2014, published in Molekulyarnaya Biologiya, 2014, Vol. 48, No. 1, pp. 3–14.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pchelina, S.N., Emelyanov, A.K. & Usenko, T.S. Molecular basis of Parkinsons’s disease linked to LRRK2 mutations. Mol Biol 48, 1–10 (2014). https://doi.org/10.1134/S0026893314010117

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893314010117

Keywords

Navigation