Skip to main content
Log in

Structure of DNA complexes with chromosomal protein HMGB1 and histone H1 in the presence of manganese ions: 2. Vibrational circular dichroism spectroscopy

  • Structural and Functional Analysis of Biopolymers and Their Complexes
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

DNA complexes with nonhistone HMGB1 chromatin protein and histone H1 in the presence of manganese ions were studied using methods of absorption and circular dichroism spectroscopy in the infrared region. It was demonstrated that the method provides good results, even for solutions that contain large particles, which cause scattering in UV region. It was determined that manganese ions in the complex are able to coordinate not only to different chemical groups in DNA, but also to dicarboxylic acid residues of the HMGB1 protein, which stimulates DNA condensation and slightly weakens DNA-protein interactions in the complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ner S.S. 1992. HMGs everywhere. Curr. Biol. 2, 208–210.

    Article  PubMed  CAS  Google Scholar 

  2. Ramm E.I., Chikhirzhina E.V., Kostyleva E.I., Vorob’ev V.I. 1995. Conformational features of linker proteins of supercompact chromatin from marine invertebrate sperm. Biochemistry (Moscow). 60, 150–158.

    CAS  Google Scholar 

  3. Chikhirzhina E.V, Vorob’ev V.I. 2002. Linker histones: Conformational changes and the role in the structural organization of chromatin. Tsitologiya. 44, 721–736.

    CAS  Google Scholar 

  4. Travers A. 1999. The location of the linker histone on the nucleosome. Trends Biochem. Sci. 24, 4–7.

    Article  PubMed  CAS  Google Scholar 

  5. Jerzmanowski A. 2004. The linker histones. In: Chromatin Structure and Dynamics: State-of-the-Art. Eds. Zlatanova J., Leuba S.H. NY: Elsevier, pp. 75–102.

    Chapter  Google Scholar 

  6. Read C.M., Cary P.D., Crane-Robinson C., Driscoll P.C., Norman D.G. 1993. Solution structure of a DNA-binding domain from HMG1. Nucleic Acids Res. 21, 3427–3436.

    Article  PubMed  CAS  Google Scholar 

  7. Ramakrishnan V., Fich J.T., Graziano V., Lee P.L., and Sweet, R.M. 1993. Crystal structure of globular domain of histone H5 and its implications for nucleosome binding. Nature. 362, 219–223.

    Article  PubMed  CAS  Google Scholar 

  8. Zlatanova J., van Holde K. 1998. Linker histones versus HMG1/2: A struggle for dominance? BioEssays. 20, 584–588.

    Article  PubMed  CAS  Google Scholar 

  9. Polyanichko A.M., Wieser H. 2005. The FTIR/VCD spectroscopy as an informative tool for the investigation of large supramolecular complexes of biological macromolecules. Biopolymers. 78, 329–339.

    Article  PubMed  CAS  Google Scholar 

  10. Chikhirzhina E.V., Polyanichko A.M., Kostyleva E.I., Vorobyev V.I. 2011. Structure of DNA complexes with chromosomal protein HMGB1 and histone H1 in the presence of manganese ions: 1. Circular dichroism spectroscopy. Mol. Biol. (Moscow). 45, 318–326.

    Article  CAS  Google Scholar 

  11. Polyanichko A., Wieser H. 2010. Structural organization of DNA-protein complexes of chromatin studied by vibrational and electronic circular dichroism. Spectroscopy. 24, 239–244.

    Article  Google Scholar 

  12. Polyanichko A.M., Davydenko S.G., Chikhirzhina E.V., Vorob’ev V.I. 2000 The interaction of supercoiled DNA with nonhistone protein HMG1. Tsitologiya. 42, 787–793.

    CAS  Google Scholar 

  13. Chikhirzhina E.V., Polyanichko A.M., Skvortsov A.N., Kostyleva E.I., Houssier C., Vorob’ev V.I. 2002. HMG1 domains: The victims of the circumstances. Mol. Biol. (Moscow). 36, 412–418.

    Article  CAS  Google Scholar 

  14. Polyanichko A.M., Chikhirzhina E.V., Skvortsov A.N., Kostyleva E.I., Colson P., Houssier C., Vorob’ev V.I. 2002. The HMG1 Ta(i)le. J. Biomol. Struct. Dyn. 19, 1053–1062.

    Article  PubMed  CAS  Google Scholar 

  15. Chikhirzhina E., Polyanichko A., Leonenko Z., Wieser H., Vorobyev V. 2010. C-terminal domain of nonhistone protein HMGB1 as a modulator of HMGB1-DNA structural interactions. Spectroscopy. 24, 361–366.

    Article  Google Scholar 

  16. Polyanichko A.M., Leonenko Z.V., Kramb D., Wieser H., Vorob’ev V.I., Chikhirzhina E.V. 2008. Visualization of DNA complexes with HMGB1 and its C-truncated form HMGB1(A+B). Biophysics (Moscow). 53, 202–206.

    Article  Google Scholar 

  17. Rodionova T.Yu., Chikhirzhina E.V., Vorob’yov V.I., Polyanichko A.M. 2009. Changes in the secondary structure of HMGB1 protein bonded to DNA. J. Struct. Chem. 50, 976–981.

    Article  CAS  Google Scholar 

  18. Polyanichko A.M., Rodionova T.J., Vorob’ev V.I., Chikhirzhina E.V. 2011. Conformational properties of nuclear protein HMGB1 and specificity of its interaction with DNA. Cell Tissue Biol. 5, 114–119.

    Article  Google Scholar 

  19. Kohlstaedt L.A, Cole R.D. 1994. Specific interaction between H1 histone and high mobility protein HMG1. Biochemistry. 33, 570–575.

    Article  PubMed  CAS  Google Scholar 

  20. Kohlstaedt L.A., Cole R.D. 1994. Effect of pH on interactions between DNA and high-mobility group protein HMG1. Biochemistry. 33, 12702–12707.

    Article  PubMed  CAS  Google Scholar 

  21. Polyanichko A., Chikhirzhina E. 2012. Interaction between nonhistone protein HMGB1 and linker his-tone H1 facilitates the formation of structurally ordered DNA-protein complexes. Spectroscopy (The Netherlands). 27, 393–398.

    Article  CAS  Google Scholar 

  22. Saito K., Kikuchi T., Shirakawa H., Yoshida M. 1999. The stabilized structural array of two HMG1/2-boxes endowed by a linker sequence between them is requisite for the effective binding of HMG1 with DNA. J. Biochem. 125, 399–405.

    Article  PubMed  CAS  Google Scholar 

  23. McCauley M.J., Zimmerman J., Maher L.J. 3rd, Williams M.C. 2007. HMGB binding to DNA: Single and double box motifs. J. Mol. Biol. 374, 993–1004.

    Article  PubMed  CAS  Google Scholar 

  24. Khadake J.R., Rao M.R. 1995. DNA- and chromatin-condensing properties of rat testes H1a and H1t compared to those of rat liver H1bdec; H1t is a poor condenser of chromatin. Biochemistry. 34, 15792–15801.

    Article  PubMed  CAS  Google Scholar 

  25. Polyanichko A.M., Chikhirzhina E.V., Kostyleva E.I., Vorob’ev V.I. 2004. Structure of DNA complexes with nonhistone chromosomal protein HMGB1 in the presence of manganese ions. Mol. Biol. (Moscow). 38, 891–898.

    Article  CAS  Google Scholar 

  26. Polyanichko A.M., Chikhirzhina E.V., Andrushchenko V.V., Kostyleva E.I., Wieser H., Vorob’ev V.I. 2004. The effect of Ca2+ ions on DNA compaction in the complex with HMGB1 nonhistone chromosomal protein. Mol. Biol. (Moscow). 38, 590–599.

    Article  CAS  Google Scholar 

  27. Polyanichko A., Andrushchenko V., Chikhirzhina E., Vorob’ev V., Wieser H. 2004. The effect of manganese(II) on DNA structure: Electronic and vibrational circular dichroism studies. Nucleic Acids Res. 32, 989–996.

    Article  PubMed  CAS  Google Scholar 

  28. Shockett P.E., Schatz D.G. 1999. DNA hairpin opening mediated by the RAG1 and RAG2 proteins. Mol. Cell Biol. 19, 4159–4166.

    PubMed  CAS  Google Scholar 

  29. Kriatchko A.N., Bergeron S., Swanson P.C. 2008. HMG-box domain stimulation of RAG1/2 cleavage activity is metal ion dependent. BMC Mol. Biol. 9, 32–42.

    Article  PubMed  Google Scholar 

  30. Kim D.R., Oettinger M.A. 1998. Functional analysis of coordinated cleavage in V(D)J recombination. Mol. Cell Biol. 18, 4679–4688.

    PubMed  CAS  Google Scholar 

  31. Fugmann S.D., Lee A.I., Shockett P.E., Villey I.J., Schatz D.G. 2000. The RAG proteins and V(D)J recombination: Complexes, ends, and transposition. Annu. Rev. Immunol. 18, 495–527.

    Article  PubMed  CAS  Google Scholar 

  32. Bergeron S., Madathiparambil T., Swanson P.C. 2005. Both high mobility group (HMG)-boxes and the acidic tail of HMGB1 regulate recombination-activating gene (RAG)-mediated recombination signal synapsis and cleavage in vitro, J. Biol. Chem. 280, 31314–31324.

    Article  PubMed  CAS  Google Scholar 

  33. Nafie L.A. 1997. Infrared and Raman vibrational optical activity: Theoretical and experimental aspects. Annu. Rev. Phys. Chem. 48, 357–376.

    Article  PubMed  CAS  Google Scholar 

  34. Keiderling T.A. 1996. Vibrational circular dichroism applications to conformational analysis of biomolecules. In: Circular Dichroism and the Conformational Analysis of Biomolecules. Ed. Fasman G.D. NY: Plenum, pp. 555–598.

    Chapter  Google Scholar 

  35. Keiderling T.A. 2001. Vibrational circular dichroism of peptides and proteins: Survey of techniques, qualitative and quantitative analyses, and applications. In: Infrared and Raman Spectroscopy of Biological Materials. Eds. Bing Yan, Gremlich H.-U. NY: Marcel Dekker, vol. 24, pp. 55–100.

    Google Scholar 

  36. Polyanichko A.M., Wieser H. 2007. Vibrational circular dichroism and its applications to protein studies. In: Methods in Protein Structure and Stability Analysis: Vibrational Spectroscopy. Eds. Permyakov E., Uversky V. NY: Nova Sci., pp. 267–302.

    Google Scholar 

  37. Polyanichko A.M., Andrushchenko V.V., Bou P., Wieser H. 2012. Vibrational circular dichroism studies of biological macromolecules and their complexes. In: Circular Dichroism: Theory and Spectroscopy. Ed. Rodgers D.S. NY: Nova Sci., pp. 67–126.

    Google Scholar 

  38. Tsankov D., Eggimann T., Wieser H. 1995. An alternative design for improved FTIR-VCD capabilities. Appl. Spectrosc. Rev. 49, 132–138.

    Article  CAS  Google Scholar 

  39. Andrushchenko V., Leonenko Z., Cramb D., van De S.H., Wieser H. 2001. Vibrational CD (VCD) and atomic force microscopy (AFM) study of DNA interaction with Cr3+ ions: VCD and AFM evidence of DNA condensation. Biopolymers. 61, 243–260.

    Article  PubMed  CAS  Google Scholar 

  40. Andrushchenko V., van De S.H., Wieser H. 2003. DNA interaction with Mn2+ ions at elevated temperatures: VCD evidence of DNA aggregation. Biopolymers. 69, 529–545.

    Article  PubMed  CAS  Google Scholar 

  41. Tsuboi M. 1969. Application of infrared spectroscopy to structural studies of nucleic acids. Appl. Spectrosc. Rev. 3, 45–90.

    Article  CAS  Google Scholar 

  42. Baumruk V., Keiderling T.A. 1993. Vibrational circular dichroism of proteins in H2O solution. J. Am. Chem. Soc. 115, 6939–6942.

    Article  CAS  Google Scholar 

  43. Barth A., Zscherp C. 2002. What vibrations tell us about proteins. Q. Rev. Biophys. 35, 369–430.

    Article  PubMed  CAS  Google Scholar 

  44. Wang L., Yang L., Keiderling T.A. 1994. Vibrational circular dichroism of A-, B-, and Z-form nucleic acids in the PO2-stretching region. Biophys. J. 67, 2460–2467.

    Article  PubMed  CAS  Google Scholar 

  45. Andrushchenko V., Wieser H., Bou P. 2002. B-Z conformational transition of DNA monitored by vibrational circular dichroism: Ab initio interpretation of the experiment. J. Phys. Chem. B. 106, 12623–12634.

    Article  CAS  Google Scholar 

  46. Taillandier E., Liquier J., Taboury J.A. 1985. Infrared spectral studies of DNA conformations. In: Advances in Infrared and Raman Spectroscopy. Eds. Clark R.J.H., Hester R.E. NY: Wiley-Heyden, pp. 65–114.

    Google Scholar 

  47. Taillandier E. 1990. Nucleic acid conformations studied by vibrational spectroscopy. In: Structure and Methods. Eds. Sarma R.H., Sarma M.H. NY: Adenine Press, vol. 3, pp. 73–78.

    Google Scholar 

  48. Sissoeff I., Grisvard J., Guille E. 1976. Studies on metal ions-DNA interactions: Specific behaviour of reiterative DNA sequences. Prog. Biophys. Mol. Biol. 31, 165–199.

    Article  PubMed  CAS  Google Scholar 

  49. Granot J., Feigon J., Kearns D.R. 1982. Interactions of DNA with divalent metal ions: 1. 31P-NMR studies. Biopolymers. 21, 181–201.

    Article  PubMed  CAS  Google Scholar 

  50. Granot J., Kearns D.R. 1982. Interactions of DNA with divalent metal ions: 2. Proton relaxation enhancement studies. Biopolymers. 21, 203–218.

    Article  PubMed  CAS  Google Scholar 

  51. Granot J., Kearns D.R. 1982. Interactions of DNA with divalent metal ions: 3. Extent of metal binding: Experiment and theory. Biopolymers. 21, 219–232.

    Article  PubMed  CAS  Google Scholar 

  52. Hadden J.M., Declais A.-C., Phillips S.E.V., Lilley M.J. 2002. Metal ions bound at the active site of the junction resolving enzyme T7 endonuclease. EMBO J. 21, 3505–3515.

    Article  PubMed  CAS  Google Scholar 

  53. Yamagata A., Kakuta Y., Masui R., Fukuyama K. 2002. The crystal structure of exonuclease RecJ bound to Mn2+ ion suggests how its characteristic motifs are involved in exonuclease activity. Proc. Natl. Acad. Sci. U. S. A. 99, 5908–5912.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Polyanichko.

Additional information

Original Russian Text © A.M. Polyanichko, V. I. Vorob’ev, E.V. Chikhirzhina, 2013, published in Molekulyarnaya Biologiya, 2013, Vol. 47, No. 2, pp. 338–346.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polyanichko, A.M., Vorob’ev, V.I. & Chikhirzhina, E.V. Structure of DNA complexes with chromosomal protein HMGB1 and histone H1 in the presence of manganese ions: 2. Vibrational circular dichroism spectroscopy. Mol Biol 47, 299–306 (2013). https://doi.org/10.1134/S0026893313020118

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893313020118

Keywords

Navigation