Skip to main content
Log in

Cloning and characterization of trichome-specific promoter of cpr71av1 gene involved in artemisinin biosynthesis in Artemisia annua L.

  • Genomics. Transcriptomics
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Artemisinin, a sesquiterpene lactone endoperoxide derived from Artemisia annua L.(Asteraceae), is the most effective antimalarial drug. We used two methods: genome walking and thermal asymmetric interlaced polymerase chain reaction, to isolate the unknown 5′-flanking sequence of the cyp71av1 gene. The subsequent sequence analysis using bio informatics software revealed that there are several cis-acting elements inside the cyp71av1 promoter. The 5′-rapid amplification of the cDNA ends method was used to determine the transcription start site of the cyp71av1 gene. We then mapped it at the 18 base upstream of the ATG initiation codon. For simple functional characterization, we built fusion vectors between the 5′-deletion promoter and the gus reporter gene. The expression levels of the transferred vectors into A. annua L. were analyzed by the transient expression way. The β-glucuronidase assay results indicated that deletion of the region to −1551 bp did not lead to much damage in the GUS activity, whereas further deletion, to −1155 bp, resulted in a 5.5-fold reduction of GUS activity. In stabilized transgenic A. annua L. seedlings we observed that GUS expression was restricted to trichomes, which means that the promoter of the cyp71av1 gene is trichome-specific. Compared with the constitutive CaMV 35S promoter, which can express genes throughout the plant, influence on the trichome system through the trichome-specific expression promoter merely imperils plant growth. In addition, the promoter of the cyp71av1 gene contains several binding sites for transcription factors, which implies that the cyp71av1 promoter responds to more than one form of stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

6-BA:

6-benzylaminopurine

NAA:

naphthaleneacetic acid

SA:

salicylic acid

MU:

methyl umbelliferone

AS:

acetasyringone

References

  1. WHO. 2005. World Malaria Report.

  2. Tianwei Liu, Lingbo Qu, Bingren Xiang. 2003. The progress of artemisinin anti-malaria drugs. Chin. J. Med. Guide. 5, 399–401.

    Google Scholar 

  3. WHO. 2006. Guidelines for the Treatment of Malaria. Geneva: WHO.

    Google Scholar 

  4. Liu C.Z., Zhao Y., Wang Y.C. 2006. Artemisinin: Current state and perspectives for biotechnological production of an antimalarial drug. Appl. Microbiol. Biotechnol. 71, 11–20.

    Article  Google Scholar 

  5. Bertea C.M., Freije J.R., van der Woude H., et al. 2005. Identification of intermediates and enzymes involved in the early steps of artemisinin biosynthesis in Artemisia annua. Planta Med. 71, 40–47.

    Article  CAS  Google Scholar 

  6. Teoh K.H., Polichuk D.R., Reed D.W., et al. 2006. Artemisia annua L. (Asteraceae) trichome-specific cDNAs reveal CYP71AV1, a cytochrome P450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin. FEBS Lett. 580, 1411–1416.

    Article  PubMed  CAS  Google Scholar 

  7. Ro D.K., Paradise E.M., Ouellet M., et al. 2006. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature. 440, 940–943.

    Article  PubMed  CAS  Google Scholar 

  8. Jing F.Y., Zhang L., Li M.Y., et al. 2009. Abscisic acid (ABA) treatment increases artemisinin content in Artemisia annua by enhancing the expression of genes in artemisinin biosynthetic pathway. Biologia. 64, 319–323.

    Article  CAS  Google Scholar 

  9. Vergauwe A., Cammaert R., Vandenberghe D., et al. 1996. Agrobacterium tumefaciens-mediated transformation of Artemisia annua L. and regeneration of transgenic plants. Plant Cell Rep. 15, 929–933.

    Article  CAS  Google Scholar 

  10. Jefferson R.A., Kavanagh T.A., Bevan M.W. 1987. GUS fusions: β-Glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 3901–3907.

    PubMed  CAS  Google Scholar 

  11. Cote C., Rutledge R.G. 2003. An improved MUG fluorescent assay for the determination of GUS activity within transgenic tissue of woody plants. Plant Cell Rep. 21, 619–624.

    PubMed  CAS  Google Scholar 

  12. Lescot M., Déhais P., Moreau Y., et al. 2002. Plant-CARE: A database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 30, 325–327.

    Article  PubMed  CAS  Google Scholar 

  13. Higo K., Ugawa Y., Iwamoto M., Korenaga T. 1999. SIGNAL SCAN: A computer program that scans DNA sequences for eukaryotic transcriptional elements. CABIOS. 7, 203–206.

    Google Scholar 

  14. Ke J., Choi J.K., Smith M., et al. 1997. Structure of the CAC1 gene and in situ characterization of its expression (the Arabidopsis thaliana gene coding for the biotin-containing subunit of the plastidic acetyl-coenzyme a carboxylase). Plant Physiol. 113, 357–365.

    Article  PubMed  CAS  Google Scholar 

  15. Menkens A.E., Schindler U., Cashmore A.R. 1995. The G-box: A ubiquitous regulatory DNA element in plants bound by the GBF family of bZIP proteins. Trends Biochem. Sci. 20, 506–510.

    Article  PubMed  CAS  Google Scholar 

  16. Guiltinan M.J., Marcotte W.R.J., Quatrano R.S. 1990. A plant leucine zipper protein that recognizes an abscisic acid response element. Science. 250, 267–271.

    Article  PubMed  CAS  Google Scholar 

  17. McKendree W.L.J., Ferl R.J. 1992. Functional elements of the Arabidopsis Adh promoter include the G-box. Plant Mol. Biol. 19, 859–862.

    Article  PubMed  CAS  Google Scholar 

  18. Block A., Dangl J.L., Hahlbrock K., et al. 1990. Functional borders, genetic fine structure, and distance requirements of cis elements mediating light responsiveness of the parsley chalcone synthase promoter. Proc. Natl. Acad. Sci. U. S. A. 87, 5387–5391.

    Article  PubMed  CAS  Google Scholar 

  19. Fujita Y., Fujita M., Satoh R., et al. 2005. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell. 17, 3470–3488.

    Article  PubMed  CAS  Google Scholar 

  20. Hobo T., Asada M., Kowyama Y., Hattori T. 1999. ACGT-containing abscisic acid response element (ABRE) and coupling element 3 (CE3) are functionally equivalent. Plant J. 19, 679–689.

    Article  PubMed  CAS  Google Scholar 

  21. Mason H.S., DeWald D.B., Mullet J.E. 1993. Identification of a methyl jasmonate-responsive domain in the soybean vspB promoter. Plant Cell. 5, 241–251.

    Article  PubMed  CAS  Google Scholar 

  22. Baker S.S., Wilhelm K.S., Thomashow M.F. 1994. The 5′-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol. Biol. 24, 701–713.

    Article  PubMed  CAS  Google Scholar 

  23. Urao T., Yamaguchi-Shinozaki K., Urao S., Shinozaki K. 1993. An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell. 5, 1529–1539.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueyue Wang.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Yang, K., Jing, F. et al. Cloning and characterization of trichome-specific promoter of cpr71av1 gene involved in artemisinin biosynthesis in Artemisia annua L.. Mol Biol 45, 751–758 (2011). https://doi.org/10.1134/S0026893311040145

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893311040145

Keywords

Navigation