Skip to main content
Log in

Dual nature of electron spin resonance in YbCo2Zn20 intermetallic compound

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

In single crystals of YbCo2Zn20 intermetallic compound, two coexisting types of electron spin resonance signals related to the localized magnetic moments of cobalt and to itinerant electrons have been observed in the 4.2–300 K temperature range. It is shown that the relative contribution of itinerant electrons to the total magnetization does not exceed 9%. We argue that the electron dynamics in YbCo2Zn20 and YbCuAl heavy fermion systems is determined by the effects produced by the magnetic subsystem of the localized 3d-electrons. We also discuss general aspects of the electron spin resonance spectroscopy in underdoped ytterbium-based intermetallics and the spectral manifestations of the interplay between the efficiency of the hybridization of f-electrons with the electrons filling outer atomic shells, crystal field effects, and the effects related to the proximity to the quantum critical point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. R. Stewart, Rev. Mod. Phys. 56, 755 (1984).

    Article  ADS  Google Scholar 

  2. S. D. Schultz, R. Fredkin, B. L. Gehman, and M. R. Shanabarger, Phys. Rev. Lett. 31, 1297 (1973).

    Article  ADS  Google Scholar 

  3. H.-A. Krug von Nidda, M. Heinrich, and A. Loidl, in Relaxation Phenomena: Liquid Crystals, Magnetic Systems, Polymers, High-Tc Superconductors, Metallic Glasses, Ed. by W. Haase and S. Wrobel (Springer, Berlin, 2003).

  4. F. Gandra, S. Schultz, S. B. Oseroff, Z. Fisk, and J. L. Smith, Phys. Rev. Lett. 55, 2719 (1985).

    Article  ADS  Google Scholar 

  5. V. A. Ivanshin, L. K. Aminov, I. N. Kurkin, J. Sichelschmidt, O. Stockert, J. Ferstl, and C. Geibel, JETP Lett. 77, 526 (2003).

    Article  ADS  Google Scholar 

  6. J. Sichelschmidt, V. A. Ivanshin, J. Ferstl, C. Geibel, and F. Steglich, Phys. Rev. Lett. 91, 156401 (2003).

    Article  ADS  Google Scholar 

  7. A. A. Zvyagin, V. Kataev, and B. Büchner, Phys. Rev. B 80, 024412 (2009).

    Article  ADS  Google Scholar 

  8. D. Huber, Mod. Phys. Lett. B 29, 1230021 (2012).

    Article  Google Scholar 

  9. P. Schlottmann, J. Appl. Phys. 113, 175E109 (2013).

    Article  Google Scholar 

  10. P. Wölfle and E. Abrahams, Phys. Rev. B 84, 041101 (2011).

    Article  ADS  Google Scholar 

  11. A. Ramires and P. Coleman, arXiv:cond-mat/1307.4109v1.

  12. C. Krellner, T. Förster, H. Jeevan, C. Geibel, and J. Sichelschmidt, Phys. Rev. Lett. 100, 066401 (2008).

    Article  ADS  Google Scholar 

  13. M. C. Torikachvili, S. Jia, E. D. Mun, S. T. Hannahs, R. C. Black, W. K. Neils, D. Martien, S. L. Bud’ko, and P. C. Canfield, Proc. Nat. Acad. Sci. 104, 9960 (2007).

    Article  ADS  Google Scholar 

  14. S. Jia, N. Ni, S. L. Bud’ko, and P. C. Canfield, Phys. Rev. B 80, 104403 (2009).

    Article  ADS  Google Scholar 

  15. Y. Saiga, K. Matsubayashi, T. Fujiwara, M. Kosaka, S. Katano, M. Hedo, T. Matsumoto, and Y. Uwatoko, J. Phys. Soc. Jpn. 77, 053701 (2008).

    Article  ADS  Google Scholar 

  16. F. J. Dyson, Phys. Rev. 98, 349 (1955).

    Article  ADS  MATH  Google Scholar 

  17. V. A. Ivanshin, D. A. Sokolov, M. C. Aronson, S. Jia, S. L. Bud’ko, and P. C. Canfield, J. Alloys Compd. 480, 126 (2009).

    Article  Google Scholar 

  18. V. A. Ivanshin, T. O. Litvinova, and A. A. Sukhanov, J. Phys.: Conf. Ser. 273, 012035 (2011).

    ADS  Google Scholar 

  19. C. Tien, J.-T. Yu, and H.-M. Duh, Jpn. J. Appl. Phys. 32, 2658 (1993).

    Article  ADS  Google Scholar 

  20. J. Sichelschmidt, J. Wykhoff, H.-A. Krug von Nidda, I. I. Fazlishanov, Z. Hossain, C. Krellner, C. Geibel, and F. Steglich, J. Phys.: Condens. Matter 19, 016211 (2007).

    ADS  Google Scholar 

  21. T. Gruner, J. Sichelschmidt, C. Klingner, C. Krellner, C. Geibel, and F. Steglich, Phys. Rev. B 85, 035119 (2012).

    Article  ADS  Google Scholar 

  22. A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendon, Oxford, 1970; Mir, Moscow, 1972).

    Google Scholar 

  23. D. L. Huber, J. Phys. Chem. Sol. 32, 2145 (1971).

    Article  ADS  Google Scholar 

  24. S. V. Maleev, Sov. Phys. JETP 39, 889 (1974).

    ADS  Google Scholar 

  25. P. Burgardt and M. S. Seehra, Phys. Rev. B 16, 1802 (1977).

    Article  ADS  Google Scholar 

  26. S. E. Barnes, Adv. Phys. 30, 801 (1981).

    Article  ADS  Google Scholar 

  27. V. A. Ivanshin, T. O. Litvinova, A. A. Sukhanov, D. A. Sokolov, and M. K. Aronson, JETP Lett. 90, 116 (2009).

    Article  ADS  Google Scholar 

  28. V. A. Ivanshin, E. M. Gataullin, A. A. Sukhanov, U. Pfannenschmidt, and R. Pöttgen, J. Phys.: Conf. Ser. 391, 012024 (2012).

    ADS  Google Scholar 

  29. M. A. Romero, A. A. Aligia, J. G. Sereni, and G. Nieva, J. Phys.: Condens. Matter 26, 025602 (2014).

    ADS  Google Scholar 

  30. L. M. Holanda, J. M. Vargas, C. Rettori, S. Nakatsuji, K. Kuga, Z. Fisk, S. B. Oseroff, and P. G. Pagliuso, Phys. Rev. Lett. 107, 026402 (2011).

    Article  ADS  Google Scholar 

  31. E. Abrahams and P. Wölfle, Phys. Rev. B 78, 104423 (2008).

    Article  ADS  Google Scholar 

  32. P. Schlottmann, Phys. Rev. B 79, 045104 (2009).

    Article  ADS  Google Scholar 

  33. A. P. Murani, W. C. M. Mattens, F. R. de Boer, and G. H. Lander, Phys. Rev. B 31, 52 (1985).

    Article  ADS  Google Scholar 

  34. H. Yamaoka, N. Tsujii, Y. Utsumi, H. Sato, I. Jarrige, Y. Yamamoto, J.-F. Lin, N. Hiraoka, H. Ishii, K.-D. Tsuei, and J. Mizuki, Phys. Rev. B 87, 205120 (2013).

    Article  ADS  Google Scholar 

  35. T. Mazet, D. Malterre, M. François, C. Dallera, M. Grioni, and G. Monaco, Phys. Rev. Lett. 111, 096402 (2013).

    Article  ADS  Google Scholar 

  36. H.-A. Krug von Nidda, G. Kruschel, A. Loidl, and B. Elschner, Magn. Reson. Solids 6, 155 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Ivanshin.

Additional information

Original Russian Text © V.A. Ivanshin, T.O. Litvinova, A.A. Sukhanov, N.A. Ivanshin, S. Jia, S.L. Bud’ko, P.C. Canfield, 2014, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2014, Vol. 99, No. 3, pp. 173–178.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanshin, V.A., Litvinova, T.O., Sukhanov, A.A. et al. Dual nature of electron spin resonance in YbCo2Zn20 intermetallic compound. Jetp Lett. 99, 153–157 (2014). https://doi.org/10.1134/S0021364014030096

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364014030096

Keywords

Navigation