Skip to main content
Log in

Nature of the quantum critical point as disclosed by extraordinary behavior of magnetotransport and the lorentz number in the heavy-fermion metal YbRh2Si2

  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Physicists are engaged in vigorous debate on the nature of the quantum critical points (QCP) governing the low-temperature properties of heavy-fermion metals. Recent experimental observations of the much-studied compound YbRh2Si2 in the regime of vanishing temperature incisively probe the nature of its magnetic-field-tuned QCP. The jumps revealed both in the residual resistivity ρ0 and the Hall resistivity R H, along with violation of the Wiedemann-Franz law, provide vital clues to the origin of such non-Fermi-liquid behavior. The empirical facts point unambiguously to association of the observed QCP with a fermion-condensation phase transition. Based on this insight, the resistivities ρ0 and R H are predicted to show jumps at the crossing of the QCP produced by application of a magnetic field, with attendant violation of the Wiedemann-Franz law. It is further demonstrated that experimentally identifiable multiple energy scales are related to the scaling behavior of the effective mass of the quasiparticles responsible for the low-temperature properties of such heavy-fermion metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. R. Stewart, Rev. Mod. Phys. 73, 797 (2001).

    Article  ADS  Google Scholar 

  2. H. v. Löhneysen, A. Rosch, M. Vojta, and P. Wölfle, Rev. Mod. Phys. 79, 1015 (2007).

    Article  ADS  Google Scholar 

  3. P. Gegenwart, Q. Si, and F. Steglich, Nature Phys. 4, 186 (2008).

    Article  ADS  Google Scholar 

  4. S. Sachdev, Nature Phys. 4, 173 (2008).

    Article  ADS  Google Scholar 

  5. P. Coleman and A. J. Schofield, Nature 433, 226 (2005).

    Article  ADS  Google Scholar 

  6. K. Kadowaki and S. B. Woods, Solid State Commun. 58, 507 (1986).

    Article  ADS  Google Scholar 

  7. V. R. Shaginyan, M. Ya. Amusia, A. Z. Msezane, and K. G. Popov, Phys. Rep. 492, 31 (2010).

    Article  ADS  Google Scholar 

  8. V. R. Shaginyan, Phys. At. Nucl. 74, 1107 (2011).

    Article  Google Scholar 

  9. V. A. Khodel, J. W. Clark, and M. V. Zverev, Phys. At. Nucl. 74, 1230 (2011).

    Article  Google Scholar 

  10. P. Coleman, C. Pepin, Q. Si, and R. Ramazashvili, J. Phys.: Condens. Matter 13, R723 (2001).

    Article  ADS  Google Scholar 

  11. P. Coleman and C. Pepin, Physica B 312–313, 383 (2002).

    Article  Google Scholar 

  12. V. A. Khodel, JETP Lett. 86, 721 (2007).

    Article  ADS  Google Scholar 

  13. J. W. Clark, V. A. Khodel, and M. V. Zverev, Int. J. Mod. Phys. B 24, 4901 (2010).

    Article  ADS  MATH  Google Scholar 

  14. V. A. Khodel and V. R. Shaginyan, JETP Lett. 51, 553 (1990).

    ADS  Google Scholar 

  15. G. E. Volovik, Lect. Notes Phys. 718, 31 (2007).

    Article  MathSciNet  ADS  Google Scholar 

  16. P. Gegenwart et al., Science 315, 969 (2007).

    Article  ADS  Google Scholar 

  17. S. Friedemann et al., Proc. Natl. Acad. Sci. USA 107, 14547 (2010).

    Article  ADS  Google Scholar 

  18. S. Friedemann et al., J. Phys.: Condens. Matter 23, 094216 (2011).

    Article  ADS  Google Scholar 

  19. H. Pfau et al., Nature 484, 493 (2012).

    Article  ADS  Google Scholar 

  20. P. Schlottmann, Z. Phys. B: Condens. Matter 51, 223 (1983).

    Article  ADS  Google Scholar 

  21. D. Pines and P. Noziéres, Theory of Quantum Liquids (Benjamin, New York, 1966).

    Google Scholar 

  22. P. Noziéres, J. Phys. I France 2, 443 (1992).

    Article  Google Scholar 

  23. J. W. Clark, V. A. Khodel, and M. V. Zverev, Phys. Rev. B 71, 012401 (2005).

    Article  ADS  Google Scholar 

  24. P. Gegenwart et al., Phys. Rev. Lett. 89, 056402 (2002).

    Article  ADS  Google Scholar 

  25. V. R. Shaginyan, JETP Lett. 79, 286 (2004).

    Article  ADS  Google Scholar 

  26. D. Takahashi et al., Phys. Rev. B 67, 180407 (2003).

    Article  ADS  Google Scholar 

  27. J. Custers et al., Nature 424, 524 (2003).

    Article  ADS  Google Scholar 

  28. V. A. Khodel and M. V. Zverev, JETP Lett. 85, 404 (2007).

    Article  ADS  Google Scholar 

  29. S. Ernst et al., Nature 474, 363 (2011).

    Article  MathSciNet  Google Scholar 

  30. V. R. Shaginyan, A. Z. Msezane, K. G. Popov, et al., Phys. Rev. B 86, 085147 (2012).

    Article  ADS  Google Scholar 

  31. P. Aynajian et al., Nature 486, 201 (2012).

    Article  ADS  Google Scholar 

  32. S. Hikami, A. I. Larkin, and Y. Nagaoka, Prog. Theor. Phys. 63, 707 (1980).

    Article  ADS  Google Scholar 

  33. J. Paglione et al., Pys. Rev. Lett. 91, 246405 (2003).

    Article  ADS  Google Scholar 

  34. V. R. Shaginyan, JETP Lett. 81, 222 (2005).

    Article  ADS  Google Scholar 

  35. V. R. Shaginyan and K. G. Popov, Phys. Lett. A 361, 406 (2007).

    Article  ADS  Google Scholar 

  36. W. K. Park and L. H. Greene, J. Phys.: Condens. Matter 21, 103203 (2009).

    Article  ADS  Google Scholar 

  37. M. R. Norman, Q. Si, Ya. B. Bazaliy, and R. Ramazashvili, Phys. Rev. Lett. 90, 116601 (2002).

    Article  ADS  Google Scholar 

  38. V. A. Khodel, M. V. Zverev, and J. W. Clark, JETP Lett. 81, 315 (2005).

    Article  ADS  Google Scholar 

  39. S. Paschen et al., Nature 432, 881 (2004).

    Article  ADS  Google Scholar 

  40. V. R. Shaginyan, P. G. Popov, and S. A. Artamonov, JETP Lett. 82, 215 (2005).

    Article  ADS  Google Scholar 

  41. V. A. Khodel, V. M. Yakovenko, and M. V. Zverev, JETP Lett. 86, 772 (2007).

    Article  ADS  Google Scholar 

  42. E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Pergamon, Oxford, 1981).

    Google Scholar 

  43. N. W. Ashkroft and N. D. Mermin, Solid State Physics (HRW, Philadelphia, 1976).

    Google Scholar 

  44. N. Oeschler et al., Physica B 403, 1254 (2008).

    Article  ADS  Google Scholar 

  45. V. R. Shaginyan et al., Phys. Lett. A 373, 986 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. R. Shaginyan.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaginyan, V.R., Msezane, A.Z., Popov, K.G. et al. Nature of the quantum critical point as disclosed by extraordinary behavior of magnetotransport and the lorentz number in the heavy-fermion metal YbRh2Si2 . Jetp Lett. 96, 397–404 (2012). https://doi.org/10.1134/S0021364012180105

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364012180105

Keywords

Navigation