Skip to main content
Log in

Ultrafast electron dynamics on the silicon surface excited by an intense femtosecond laser pulse

  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The electron dynamics on the silicon surface during the pump ultrashort infrared laser pulse is studied by time-resolved optical microscopy and electron-emission measurements. It is found that the optical response of the material under the conditions where a dense electron-hole plasma is formed is determined by the renormalization of the band spectrum of the material rather than by intraband transitions of photoexcited carriers. Nonlinear Auger recombination in the plasma enhanced by the plasma-induced renormalization of the band gap and accompanied by the generation of hot charge carriers stimulates intense prompt emission of such carriers from the surface of the photoexcited material, whose work function decreases owing to the large plasma-induced renormalization of the energies of higher conduction bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Seibert, G. C. Cho, W. Kutt, et al., Phys. Rev. B 42, 2842 (1990).

    Article  ADS  Google Scholar 

  2. K. Sokolowski-Tinten and D. von der Linde, Phys. Rev. B 61, 2643 (2000); T. Y. Choi and C. P. Grigoropoulos, J. Appl. Phys. 92, 4918 (2002).

    Article  ADS  Google Scholar 

  3. E. J. Yoffa, Phys. Rev. B 21, 2415 (1980).

    Article  ADS  Google Scholar 

  4. A. Oschlies, R. W. Godby, and R. J. Needs, Phys. Rev. B 45, 13741 (1992).

    Article  ADS  Google Scholar 

  5. C. D. Spataru, L. X. Benedict, and S. G. Louie, Phys. Rev. B 69, 205204 (2004).

    Article  ADS  Google Scholar 

  6. T. Ichibayashi, S. Tanaka, J. Kanasaki, and K. Tanimura, Phys. Rev. B 84, 235210 (2011).

    Article  ADS  Google Scholar 

  7. S. I. Kudryashov, M. Kandyla, C. A. D. Roeser, and E. Mazur, Phys. Rev. B 75, 085207 (2007).

    Article  ADS  Google Scholar 

  8. M. Hase, M. Katsuragawa, A. M. Constantinescu, and H. Petek, Nature Photon. 6, 243 (2012).

    Article  ADS  Google Scholar 

  9. E. N. Glezer, Y. Siegal, L. Huang, and E. Mazur, Phys. Rev. B 51, 6959 (1995).

    Article  ADS  Google Scholar 

  10. S. I. Kudryashov, Proc. SPIE 5448, 1171 (2004).

    Article  ADS  Google Scholar 

  11. T. Apostolova, A. A. Ionin, S. I. Kudryashov, et al., Opt. Eng. 51, 121808 (2012).

    Article  Google Scholar 

  12. J. M. Liu, R. Yen, H. Kurz, and N. Bloembergen, Appl. Phys. Lett. 39, 755 (1981).

    Article  ADS  Google Scholar 

  13. C. T. Hebeisen, G. Sciaini, M. Harb, et al., Phys. Rev. B 78, 081403R (2008); H. Park and J. M. Zuo, Appl. Phys. Lett. 94, 251103 (2009).

    Article  ADS  Google Scholar 

  14. N. M. Bulgakova, R. Stoian, A. Rosenfeld, et al., Phys. Rev. B 69, 054102 (2004).

    Article  ADS  Google Scholar 

  15. C. V. Shank, R. Yen, and C. Hirlimann, Phys. Rev. Lett. 50, 454 (1983).

    Article  ADS  Google Scholar 

  16. D. Hulin, M. Combescot, J. Bok, et al., Phys. Rev. Lett. 52, 1998 (1984).

    Article  ADS  Google Scholar 

  17. S. I. Ashitkov, A. V. Ovchinnikov, and M. B. Agranat, JETP Lett. 79, 529 (2004); M. B. Agranat, S. I. Ashitkov, S. I. Anisimov, et al., Appl. Phys. A 94, 879 (2009).

    Article  ADS  Google Scholar 

  18. A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).

    Article  ADS  Google Scholar 

  19. Handbook of Optical Constants of Solids, Ed. by E. D. Palik (Academic, Orlando, 1998).

    Google Scholar 

  20. L. Bruschi, M. Santini, and G. Torzo, J. Phys. B: At. Mol. Phys. 17, 1137 (1984).

    Article  ADS  Google Scholar 

  21. W. Wendelen, D. Autrique, and A. Bogaerts, Appl. Phys. Lett. 96, 051121 (2010).

    Article  ADS  Google Scholar 

  22. S. I. Kudryashov and V. I. Emel’yanov, JETP Lett. 73, 228 (2001); S. I. Kudryashov and V. I. Emel’yanov, J. Exp. Theor. Phys. 94, 94 (2002).

    Article  ADS  Google Scholar 

  23. A. Dargys and J. Kundrotas, Handbook on Physical Properties of Ge, Si, GaAs and InP (Science and Encyclopedia Publ., Vilnius, 1994).

    Google Scholar 

  24. A. J. Sabbah and D. M. Riffe, Phys. Rev. B 66, 165217 (2002).

    Article  ADS  Google Scholar 

  25. P. Yu and M. Cardona, Fundamentals of Semiconductor Physics (Springer, New York, 1996; Fizmatlit, Moscow, 2002).

    Google Scholar 

  26. J.-Y. Bigot, M. T. Portella, R. W. Schoenlein, et al., Phys. Rev. Lett. 67, 636 (1991).

    Article  ADS  Google Scholar 

  27. D. H. Reitze, T. R. Zhang, Wm. M. Wood, and M. C. Downer, J. Opt. Soc. Am. B 7, 84 (1990); J. Bonse, Appl. Phys. A 84, 63 (2006); D. J. Hwang, C. P. Grigoropoulos, and T. Y. Choi, J. Appl. Phys. 99, 083101 (2006).

    Article  ADS  Google Scholar 

  28. Physical Values, Handbook, Ed. by I. S. Grigor’ev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991) [in Russian].

    Google Scholar 

  29. W. G. Roeterdink, L. B. F. Juurlink, O. P. H. Vaughan, et al., Appl. Phys. Lett. 82, 4190 (2003); H. Dachraoui and W. Husinsky, Phys. Rev. Lett. 97, 107601 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Kudryashov.

Additional information

Original Russian Text © A.A. Ionin, S.I. Kudryashov, S.V. Makarov, P.N. Saltuganov, L.V. Seleznev, D.V. Sinitsyn, A.R. Sharipov, 2012, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2012, Vol. 96, No. 6, pp. 413–418.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ionin, A.A., Kudryashov, S.I., Makarov, S.V. et al. Ultrafast electron dynamics on the silicon surface excited by an intense femtosecond laser pulse. Jetp Lett. 96, 375–379 (2012). https://doi.org/10.1134/S002136401218004X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002136401218004X

Keywords

Navigation