Skip to main content
Log in

Behavior of aluminum near an ultimate theoretical strength in experiments with femtosecond laser pulses

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The dynamics of the motion of the free surface of micron and submicron films under the action of a compression pulse excited in the process of femtosecond laser heating of the surface layer of a target has been investigated by femtosecond interferometric microscopy. The relation between the velocity of the shock wave and the particle velocity behind its front indicates the shock compression to 9–13 GPa is elastic in this duration range. This is also confirmed by the small (≤1 ps) time of an increase in the parameters in the shock wave. Shear stresses reached in this process are close to their estimated ultimate values for aluminum. The spall strength determined at a strain rate of 109 s−1 and a spall thickness of 250–300 nm is larger than half the ultimate strength of aluminum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. I. Kanel, V. E. Fortov, and S. V. Razorenov, Usp. Fiz. Nauk 177, 809 (2007) [Phys. Usp. 50, 771 (2007)].

    Article  Google Scholar 

  2. G. V. Sin’ko and N. A. Smirnov, JETP Lett. 75, 184 (2002).

    Article  ADS  Google Scholar 

  3. M. Jahnátek, J. Hafner, and M. Krají, Phys. Rev. B 79, 224103 (2009).

    Article  ADS  Google Scholar 

  4. D. M. Clatterbuck, C. R. Krenn, M. L. Cohen, et al., Phys. Rev. Lett. 91, 135501 (2003).

    Article  ADS  Google Scholar 

  5. G. Kimminau, P. Erhart, E. M. Bringa, et al., Phys. Rev. B 81, 092102 (2010).

    Article  ADS  Google Scholar 

  6. G. I. Kanel, S. V. Razorenov, A. V. Utkin, and V. E. Fortov, Shock-Wave Phenomena in Condensed Media (Yanus-K, Moscow, 1996) [in Russian].

    Google Scholar 

  7. G. I. Kanel, Int. J. Fract. 163, 173 (2010).

    Article  MATH  Google Scholar 

  8. S. Eliezer, E. Moshe, and D. Eliezer, Laser Part. Beams 20, 87 (2002).

    Article  ADS  Google Scholar 

  9. P. M. Celliers, D. K. Bradley, G. W. Collins, et al., Rev. Sci. Instrum. 75, 4916 (2004).

    Article  ADS  Google Scholar 

  10. D. C. Swift, T. E. Tierney IV, R. A. Kopp, et al., Phys. Rev. E 69, 036406–8 (2004).

    Article  ADS  Google Scholar 

  11. V. E. Fortov, D. Batani, A. V. Kilpio, et al., Laser Part. Beams 20, 317 (2002).

    Article  ADS  Google Scholar 

  12. D. S. Moore, K. T. Gahagan, J. H. Reho, et al., Appl. Phys. Lett. 78, 40 (2001).

    Article  ADS  Google Scholar 

  13. S. I. Anisimov, N. A. Inogamov, Yu. V. Petrov, et al., Appl. Phys. A 92, 939 (2008).

    Article  ADS  Google Scholar 

  14. K. Baumung, H. J. Bluhm, B. Goel, et al., Laser Part. Beams 14, 181 (1996).

    Article  ADS  Google Scholar 

  15. D. D. Bloomquist and S. A. Sheffield, J. Appl. Phys. 54, 1717 (1983).

    Article  ADS  Google Scholar 

  16. V. V. Temnov, K. Sokolovski-Tinten, P. Zhou, et al., J. Opt. Soc. Am. B 23, 1954 (2006).

    Article  ADS  Google Scholar 

  17. M. B. Agranat, N. E. Andreev S. I. Ashitkov, et al., Pis’ma Zh. Eksp. Teor. Fiz. 85, 328 (2007) [JETP Lett. 85, 271 (2007)].

    Google Scholar 

  18. M. B. Agranat, S. I. Anisimov, S. I. Ashitkov, et al., Pis’ma Zh. Eksp. Teor. Fiz. 91, 517 (2010) [JETP Lett. 91, 471 (2010)].

    Google Scholar 

  19. K. T. Gahagan, D. S. Moore, D. J. Funk, et al., Phys. Rev. Lett. 85, 3205 (2000).

    Article  ADS  Google Scholar 

  20. Ya. B. Zeldovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Vols. 1 and 2 (2nd ed., Nauka, Moscow, 1966; Academic, New York, 1966, 1967).

    Google Scholar 

  21. Y. M. Gupta, J. M. Winey, P. B. Trivedi, et al., J. Appl. Phys. 105, 036107 (2009).

    Article  ADS  Google Scholar 

  22. J. M. Winey, B. M. LaLone, P. B. Trivedi, et al., J. Appl. Phys. 106, 073508 (2009).

    Article  ADS  Google Scholar 

  23. G. V. Garkushin, G. I. Kanel, and S. V. Razorenov, Fiz. Tverd. Tela 52, 2216 (2010) [Phys. Solid State 52, 2369 (2010)].

    Google Scholar 

  24. G. V. Stepanov, Probl. Prochnosti 8, 66 (1976).

    Google Scholar 

  25. P. A. Zhilyaev, A. Yu. Kuksin, V. V. Stegailov, et al., Fiz. Tverd. Tela 52, 1508 (2010) [Phys. Solid State 52, 1619 (2010)].

    Google Scholar 

  26. V. V. Zhakhovskii, N. A. Inogamov, Yu. V. Petrov, et al., Appl. Surf. Sci. 255, 9592 (2009).

    Article  ADS  Google Scholar 

  27. G. I. Kanel, S. V. Razorenov, A. A. Bogatch, et al., J. Appl. Phys. 79, 8310 (1996).

    Article  ADS  Google Scholar 

  28. S. V. Razorenov, G. I. Kanel, and V. E. Fortov, Fiz. Met. Metalloved. 95, 91 (2003).

    Google Scholar 

  29. G. I. Kanel, S. V. Razorenov, K. Baumung, et al., J. Appl. Phys. 90, 136 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Ashitkov.

Additional information

Original Russian Text © S.I. Ashitkov, M.B. Agranat, G.I. Kanel’, P.S. Komarov, V.E. Fortov, 2010, published in Pis’ma v Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2010, Vol. 92, No. 8, pp. 568–573.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashitkov, S.I., Agranat, M.B., Kanel’, G.I. et al. Behavior of aluminum near an ultimate theoretical strength in experiments with femtosecond laser pulses. Jetp Lett. 92, 516–520 (2010). https://doi.org/10.1134/S0021364010200051

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364010200051

Keywords

Navigation