Skip to main content
Log in

Interaction of N-acylated and N-alkylated chitosans included in liposomes with lipopolysaccharide of gram-negative bacteria

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The interactions of lipopolysaccharide (LPS) with the polycation chitosan and its derivatives — high molecular weight chitosans (300 kDa) with different degree of N-alkylation, its quaternized derivatives, N-monoacylated low molecular weight chitosans (5.5 kDa) — entrapped in anionic liposomes were studied. It was found that the addition of chitosans changes the surface potential and size of negatively charged liposomes, the magnitudes of which depend on the chitosan concentration. Acylated low molecular weight chitosan interacts with liposomes most effectively. The binding of alkylated high molecular weight chitosan with liposomes increases with the degree of its alkylation. The analysis of interaction of LPS with chitoliposomes has shown that LPS-binding activity decreased in the following order: liposomes coated with a hydrophobic chitosan derivatives > coated with chitosan > free liposomes. Liposomes with N-acylated low molecular weight chitosan bind LPS more effectively than liposomes coated with N-alkylated high molecular weight chitosans. The increase in positive charge on the molecules of N-alkylated high molecular weight chitosans at the cost of quaternization does not lead to useful increase in efficiency of binding chitosan with LPS. It was found that increase in LPS concentration leads to a change in surface ζ-potential of liposomes, an increase in average hydrodynamic diameter, and polydispersity of liposomes coated with N-acylated low molecular weight chitosan. The affinity of the interaction of LPS with a liposomal form of N-acylated chitosan increases in comparison with free liposomes. Computer simulation showed that the modification of the lipid bilayer of liposomes with N-acylated low molecular weight chitosan increases the binding of lipopolysaccharide without an O-specific polysaccharide with liposomes due to the formation of additional hydrogen and ionic bonds between the molecules of chitosan and LPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

B-LPS:

biotin-labeled lipopolysaccharide

CCM:

critical concentration of micelle formation

C-HW:

high molecular weight chitosan

C-LW:

low molecular weight chitosan

C9-C-HW:

alkylated high molecular weight chitosan

C14-C-LW:

acylated low molecular weight chitosan

FITC:

fluorescein isothiocyanate

F-LPS:

fluorescein-labeled lipopolysaccharide

LPS:

lipopolysaccharide

R-LPS:

lipopolysaccharide without an O-specific polysaccharide

References

  1. Brandenburg, K., and Wiese, A. (2004) Curr. Top. Med. Chem., 4, 1127–1146.

    Article  PubMed  CAS  Google Scholar 

  2. David, S. A. (2001) J. Molec. Recog., 14, 370–387.

    Article  CAS  Google Scholar 

  3. Andra, J., Gutsmann, Th., Garidel, P., and Brandenburg, K. (2006) J. Endotoxin Res., 12, 261–277.

    PubMed  Google Scholar 

  4. Davidova, V. N., Naberezhnykh, G. A., Yermak, I. M., Gorbach, V. I., and Solov’eva, T. F. (2006) Biochemistry (Moscow), 71, 332–339.

    Article  CAS  Google Scholar 

  5. Yermak, I. M., Davidova, V. N., Gorbach, V. I., Luk’yanov, P. A., Solov’eva, T. F., Ulmer, A. J., Buwitt-Beckmann, U., Rietschel, E. T., and Ovodov, Yu. S. (2006) Biochimie, 88, 23–30.

    Article  PubMed  CAS  Google Scholar 

  6. Naberezhnykh, G. A., Gorbach, V. I., Likhatskaya, G. N., Davidova, V. N., and Solov’eva, T. F. (2008) Biochemistry (Moscow), 73, 432–441.

    Article  CAS  Google Scholar 

  7. Dijkstra, J., Mellors, J. W., and Ryan, J. L. (1989) Infect. Immun., 57, 3357–3363.

    PubMed  CAS  Google Scholar 

  8. Naberezhnykh, G. A., Gorbach, V. I., Bratskaya, S. Yu., and Solov’eva, T. F. (2011) Chem. Nat. Comp., 46, 852–856.

    Article  CAS  Google Scholar 

  9. Yalpani, M., and Hall, L. D. (1984) Macromolecules, 17, 272–281.

    Article  CAS  Google Scholar 

  10. Snyman, D., Hamman, J. H., Kotze, J. S., Rollings, J. E., and Kotze, A. F. (2002) Carbohydr. Polym., 50, 145–150.

    Article  CAS  Google Scholar 

  11. Sajomsan, W., Ruktanonchai, U. R., Gonil, P., and Nuchuchua, O. (2009) Carbohydr. Polym., 78, 945–952.

    Article  Google Scholar 

  12. Qaqish, R. B., and Amiji, M. M. (1999) Carbohydr. Polym., 38, 99–107.

    Article  CAS  Google Scholar 

  13. Thongborisute, J., Takeuchi, H., Yamamoto, H., and Kawashima, Y. (2006) Pharmazie, 61, 106–111.

    PubMed  CAS  Google Scholar 

  14. Laye, C. D., McClements, J., and Weiss, J. (2008) J. Food Sci., 73, 7–15.

    Article  Google Scholar 

  15. Ferguson, A. D., Hofmann, E., Coulton, J. W., Diederichs, K., and Welte, W. (1998) Science, 282, 2215–2220.

    Article  PubMed  CAS  Google Scholar 

  16. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., and Bourne, P. E. (2000) Nucleic Acids Res., 28, 235–242.

    Article  PubMed  CAS  Google Scholar 

  17. Wennberg, C. L., Spoel, D., and Hub, J. S. (2012) J. Am. Chem. Soc., 134, 5351–5361.

    Article  PubMed  CAS  Google Scholar 

  18. Jiang, G.-B., Quan, D., Liao, K., and Wang, H. C. (2006) Carbohydr. Polym., 66, 514–520.

    Article  CAS  Google Scholar 

  19. Philippova, O. E., Volkov, E. V., Sitnikova, N. L., Khokhlov, A. R., Desbrieres, R., and Rinaudo, M. (2001) Biomacromolecules, 2, 483–490.

    Article  PubMed  CAS  Google Scholar 

  20. Ortona, O., Derrico, G., Mangiapia, G., and Ciccarelli, D. (2008) Carbohydr. Polym., 74, 16–22.

    Article  CAS  Google Scholar 

  21. Martins, O., Cardoso, M. B., Pohlmann, A. R., and Silveira, N. P. (2006) J. Nanosci. Nanotech., 6, 2425–2431.

    Article  Google Scholar 

  22. Henriksen, I., Smistad, F., and Karlsen, J. (1994) Int. J. Pharm., 101, 227–236.

    Article  CAS  Google Scholar 

  23. Davydova, V. N., Bratskaya, S. Yu., Gorbach, V. I., Solov’eva, T. F., Kaca, W., and Yermak, I. M. (2008) Biophys. Chem., 136, 1–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Naberezhnykh.

Additional information

Original Russian Text © G. A. Naberezhnykh, V. I. Gorbach, G. N. Likhatskaya, S. Yu. Bratskaya, T. F. Solov’eva, 2013, published in Biokhimiya, 2013, Vol. 78, No. 3, pp. 398–406.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naberezhnykh, G.A., Gorbach, V.I., Likhatskaya, G.N. et al. Interaction of N-acylated and N-alkylated chitosans included in liposomes with lipopolysaccharide of gram-negative bacteria. Biochemistry Moscow 78, 301–308 (2013). https://doi.org/10.1134/S0006297913030139

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297913030139

Key words

Navigation