Skip to main content
Log in

Cellular acidosis inhibits assembly, disassembly, and motility of stress granules

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Stress granules (SGs) are large ribonucleoprotein (RNP)-containing particles that form in cytoplasm in response to a variety of acute changes in the cellular environment. One of the general parameters of the cell environment is pH. In some diseases, as well as in muscle fatigue, tissue acidosis occurs, leading to decrease in intracellular pH. Here we studied whether decrease in pH causes the formation of SGs in cultured animal cells, whether it affects the formation of the SGs under the action of arsenite and, if such effects occur, what are the mechanisms of the influence of acidosis. Acidosis was simulated by decreasing the pH of the culture medium, which acidified the cytoplasm. We found that medium acidification to pH 6.0 in itself did not cause formation of SGs in cells. Moreover, acidification prevented the formation of SGs under treatment with sodium arsenite or sodium arsenite together with the proteasome inhibitor MG132, and it inhibited the dissociation of preformed SGs under the influence of cycloheximide. We established that pH decrease did not affect the phosphorylation of eIF2α that occurs under the action of sodium arsenite, and even caused such phosphorylation by itself. We also found that the velocity of SG motion in cytoplasm at acidic pH was very low, and the mobile fraction of SG-incorporated PABP protein revealed by FRAP was decreased. We suppose that acidic pH impairs biochemical processes favoring assembly of RNPs in stress conditions and RNP dissociation on the termination of stress. Thus, in acidosis the reaction of the cellular translation apparatus to stress is modified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FRAP:

fluorescence recovery after photobleaching

RNP:

ribonucleoprotein

SG:

stress granule

References

  1. Rehncrona, S. (1985) Ann. Emerg. Med., 14, 770–776.

    Article  PubMed  CAS  Google Scholar 

  2. Kraig, R. P., and Chestler, M. J. (1990) Cerebr. Blood Flow Metab., 10, 104–114.

    Article  CAS  Google Scholar 

  3. Sahlin, K., Harris, R. C., and Hultman, E. (1975) Biochem. J., 152, 173–180.

    PubMed  CAS  Google Scholar 

  4. Anderson, P., and Kedersha, N. (2006) J. Cell Biol., 172, 803–808.

    Article  PubMed  CAS  Google Scholar 

  5. Buchan, J. R., and Parker, R. (2009) Mol. Cell, 36, 932–941.

    Article  PubMed  CAS  Google Scholar 

  6. Kedersha, N., Chen, S., Gilks, N., Li, W., Miller, I. J., Stahl, J., and Anderson, P. (2002) Mol. Biol. Cell, 13, 195–210.

    Article  PubMed  CAS  Google Scholar 

  7. Farrell, P. J., Balkow, K., Hunt, T., Jackson, R. J., and Trachsel, H. (1977) Cell, 11, 187–200.

    Article  PubMed  CAS  Google Scholar 

  8. Kedersha, N., Cho, M., Li, W., Yacono, P., Chen, S., Gilks, N., Golan, D., and Anderson, P. (2000) J. Cell Biol., 151, 1257–1268.

    Article  PubMed  CAS  Google Scholar 

  9. Loschi, M., Leishman, C. C., Berardone, N., and Boccaccio, G. L. (2009) J. Cell Sci., 122, 3973–3982.

    Article  PubMed  CAS  Google Scholar 

  10. Nadezhdina, E. S., Lomakin, A. J., Shpilman, A. A., Chudinova, E. M., and Ivanov, P. A. (2010) Biochim. Biophys. Acta, 1803, 361–371.

    Article  PubMed  CAS  Google Scholar 

  11. Bartoli, K. M., Bishop, D. L., and Saunders, W. S. (2011) Int. J. Cell Biol., 2011, 939848.

    PubMed  Google Scholar 

  12. Ivanov, P. A., Chudinova, E. M., and Nadezhdina, E. S. (2003) Exp. Cell Res., 290, 227–233.

    Article  PubMed  CAS  Google Scholar 

  13. Kolobova, E., Efimov, A., Kaverina, I., Rishi, A. K., Schrader, J. W., Ham, A. J., Larocca, M. C., and Goldenring, J. R. (2009) Exp. Cell Res., 315, 542–555.

    Article  PubMed  CAS  Google Scholar 

  14. Dorovkov, M. V., Pavur, K. S., Petrov, A. N., and Ryazanov, A. G. (2002) Biochemistry, 41, 13444–13450.

    Article  PubMed  CAS  Google Scholar 

  15. Shanins, N. A., Ivanov, P. A., Chudinova, E. M., Severin, F. F., and Nadezhdina, E. S. (2001) Mol. Biol. (Moscow), 35, 638–646.

  16. Anderson, P., and Kedersha, N. J. (2002) Cell Sci., 115, 3227–3234.

    CAS  Google Scholar 

  17. Isozaki, U., Mitch, W. E., England, B. K., and Price, S. R. (1996) Proc. Natl. Acad. Sci. USA, 93, 1967–1971.

    Article  PubMed  CAS  Google Scholar 

  18. Chernov, K. G., Barbet, A., Hamon, L., Ovchinnikov, L. P., Curmi, P. A., and Pastre, D. (2009) J. Biol. Chem., 284, 36569–36580.

    Article  PubMed  CAS  Google Scholar 

  19. Vantelon, N., Rioux-Bilan, A., Ingrand, S., Pain, S., Page, G., Guillard, O., Barrier, L., Piriou, A., and Fauconneau, B. (2007) Eur. J. Neurosci., 26, 689–700.

    Article  PubMed  Google Scholar 

  20. Carlberg, U., Nilsson, A., and Nygard, O. (1990) Eur. J. Biochem., 191, 639–645.

    Article  PubMed  CAS  Google Scholar 

  21. Gilks, N., Kedersha, N., Ayodele, M., Shen, L., Stoecklin, G., Dember, L. M., and Anderson, P. (2004) Mol. Biol. Cell., 15, 5383–5398.

    Article  PubMed  CAS  Google Scholar 

  22. Kwon, S., Zhang, Y., and Matthias, P. (2007) Genes Dev., 21, 3381–3394.

    Article  PubMed  CAS  Google Scholar 

  23. Fujimura, K., Katahira, J., Kano, F., Yoneda, Y., and Murata, M. (2009) Biochim. Biophys. Acta, 1793, 1728–1737.

    Article  PubMed  CAS  Google Scholar 

  24. Cooper, J. R., and Wordeman, L. (2009) Curr. Opin. Cell Biol., 21, 68–73.

    Article  PubMed  CAS  Google Scholar 

  25. Ohn, T., Kedersha, N., Hickman, T., Tisdale, S., and Anderson, P. (2008) Nat. Cell Biol., 10, 1224–1231.

    Article  PubMed  CAS  Google Scholar 

  26. Ohn, T., and Anderson, P. (2010) Wiley Interdiscip. Rev. RNA, 1, 486–493.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Nadezhdina.

Additional information

Original Russian Text © E. M. Chudinova, E. S. Nadezhdina, P. A. Ivanov, 2012, published in Biokhimiya, 2012, Vol. 77, No. 11, pp. 1526–1535.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM12-154, October 7, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chudinova, E.M., Nadezhdina, E.S. & Ivanov, P.A. Cellular acidosis inhibits assembly, disassembly, and motility of stress granules. Biochemistry Moscow 77, 1277–1284 (2012). https://doi.org/10.1134/S0006297912110065

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297912110065

Key words

Navigation