Skip to main content
Log in

Interaction of poly(ADP-ribose) polymerase 1 with apurinic/apyrimidinic sites within clustered DNA damage

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

To study the interaction of poly(ADP-ribose) polymerase 1 (PARP1) with apurinic/apyrimidinic sites (AP sites) within clustered damages, DNA duplexes were created that contained an AP site in one strand and one of its analogs situated opposite the AP site in the complementary strand. Residues of 3-hydroxy-2-hydroxymethyltetrahydrofuran (THF), diethylene glycol (DEG), and decane-1,10-diol (DD) were used. It is shown for the first time that apurinic/apyrimidinic endonuclease 1 (APE1) cleaves the DNA strands at the positions of DEG and DD residues, and this suggests these groups as AP site analogs. Insertion of DEG and DD residues opposite an AP site decreased the rate of AP site hydrolysis by APE1 similarly to the effect of the THF residue, which is a well-known analog of the AP site, and this allowed us to use such AP DNAs to imitate DNA with particular types of clustered damages. PARP1, isolated and in cell extracts, efficiently interacted with AP DNA with analogs of AP sites producing a Schiff base. PARP1 competes with APE1 upon interaction with AP DNAs, decreasing the level of its cross-linking with AP DNA, and inhibits hydrolysis of AP sites within AP DNAs containing DEG and THF residues. Using glutaraldehyde as a linking agent, APE1 is shown to considerably decrease the amount of AP DNA-bound PARP1 dimer, which is the catalytically active form of this enzyme. Autopoly(ADP-ribosyl)ation of PARP1 decreased its inhibitory effect. The possible involvement of PARP1 and its automodification in the regulation of AP site processing within particular clustered damages is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

A:

dAMP

APE1:

human apurinic/apyrimidinic (AP) endonuclease 1

AP site:

apurinic/apyrimidinic site

BER:

base excision repair

DD:

decane-1,10-diol residue

DEG:

diethylene glycol residue

DTT:

dithiothreitol

PARP1:

human poly(ADP-ribose) polymerase 1

THF:

3-hydroxy-2-hydroxymethyltetrahydrofuran residue

References

  1. Lindahl, T. (2000) Mutat. Res., 462, 129–135.

    Article  CAS  PubMed  Google Scholar 

  2. Boiteux, S., and Guillet, M. (2004) DNA Repair, 3, 1–12.

    Article  CAS  PubMed  Google Scholar 

  3. Sung, J. S., and Demple, B. (2006) FEBS J., 273, 1620–629.

    Article  CAS  PubMed  Google Scholar 

  4. Lomax, M. E., and Gulston, M. K. (2002) Radiat. Prot. Dosimetry, 99, 63–68.

    CAS  PubMed  Google Scholar 

  5. David-Cordonnier, M. H., Cunniffe, S. M., Hickson, I. D., and O’Neill, P. (2002) Biochemistry, 41, 634–642.

    Article  CAS  PubMed  Google Scholar 

  6. Gulston, M., de Lara, C., Jenner, T., Davis, E., and O’Neill, P. (2004) Nucleic Acids Res., 32, 1602–1609.

    Article  CAS  PubMed  Google Scholar 

  7. Shall, S., and de Murcia, G. (2000) Mutat. Res., 460, 1–15.

    CAS  PubMed  Google Scholar 

  8. Lindahl, T., Satoh, M. S., Poirier, G. G., and Klungland, A. (1995) Trends Biochem. Sci., 20, 405–411.

    Article  CAS  PubMed  Google Scholar 

  9. Khodyreva, S. N., Ilina, E. S., Sukhanova, M. V., Kutuzov, M. M., and Lavrik, O. I. (2010) Dokl. Akad. Nauk, 431, 132–135.

    Google Scholar 

  10. Wilson, D. M., III, and Barsky, D. (2001) Mutat. Res., 485, 283–307.

    CAS  PubMed  Google Scholar 

  11. Ilina, E. S., Lavrik, O. I., and Khodyreva, S. N. (2008) Biochim. Biophys. Acta, 1784, 1777–1785.

    CAS  PubMed  Google Scholar 

  12. Zharkov, D. O., and Grollman, A. P. (1998) Biochemistry, 37, 12384–12394.

    Article  CAS  PubMed  Google Scholar 

  13. Levina, E. S., Bavykin, S. G., Shick, V. V., and Mirzabekov, A. D. (1981) Analyt. Biochem., 110, 93–101.

    Article  CAS  PubMed  Google Scholar 

  14. Takeshita, M., Chang, C. N., Johnson, F., Will, S., and Grollman, A. P. (1987) J. Biol. Chem., 262, 10171–10179.

    CAS  PubMed  Google Scholar 

  15. Erzberger, J., and Wilson, D., III. (1999) J. Mol. Biol., 290, 447–457.

    Article  CAS  PubMed  Google Scholar 

  16. Lebedeva, N. A., Khodyreva, S. N., Favre, A., and Lavrik, O. I. (2003) Biochem. Biophys. Res. Commun., 300, 182–187.

    Article  CAS  PubMed  Google Scholar 

  17. Sukhanova, M. V., Khodyreva, S. N., and Lavrik, O. I. (2004) Biochemistry (Moscow), 69, 558–568.

    Article  CAS  Google Scholar 

  18. Bradford, M. M. (1976) Analyt. Biochem., 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  19. Pyshnaya, I. A., Pyshnyi, D. V., Lomzov, A. A., Zarytova, V. F., and Ivanova, E. M. (2004) Nucleosides, Nucleotides and Nucleic Acids, 23, 1065–1071.

    Article  CAS  Google Scholar 

  20. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd Edn., Cold Spring Harbor, Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  21. Laemmli, U. K. (1970) Nature, 277, 680–685.

    Article  Google Scholar 

  22. Chaudhry, M. A., and Weinfeld, M. (1997) J. Biol. Chem., 272, 15650–15655.

    Article  CAS  PubMed  Google Scholar 

  23. McKenzie, J. A., and Strauss, P. R. (2001) Biochemistry, 40, 13254–13261.

    Article  CAS  PubMed  Google Scholar 

  24. Kun, E., Kirsten, E., Mendeleyev, J., and Ordahl, C. P. (2004) Biochemistry, 43, 210–216.

    Article  CAS  PubMed  Google Scholar 

  25. Beernink, P. T., Segelke, B. W., Hadi, M. Z., Erzberger, J. P., Wilson, D. M., III, and Rupp, B. (2001) J. Mol. Biol., 307, 1023–1034.

    Article  CAS  PubMed  Google Scholar 

  26. Barzilay, G., Mol, C. D., Robson, C. N., Walker, L. J., Cunningham, R. P., Tainer, J. A., and Hickson, I. D. (1995) Nature Struct. Biol., 2, 561–568.

    Article  CAS  PubMed  Google Scholar 

  27. Dyrkheeva, N. S., Khodyreva, S. N., and Lavrik, O. I. (2008) Biochemistry (Moscow), 73, 261–272.

    CAS  Google Scholar 

  28. Sukhanova, M. V., Khodyreva, S. N., Lebedeva, N. A., Prasad, R., Wilson, S. H., and Lavrik, O. I. (2005) Nucleic Acids Res., 33, 1222–1229.

    Article  CAS  PubMed  Google Scholar 

  29. Cistulli, C., Lavrik, O. I., Prasad, R., Hou, E., and Wilson, S. H. (2004) DNA Repair, 3, 581–591.

    CAS  PubMed  Google Scholar 

  30. Peddi, S. R., Chattopadhyay, R., Naidu, C. V., and Izumi, T. (2006) Toxicology, 224, 44–55.

    Article  CAS  PubMed  Google Scholar 

  31. Enguita, F. J., Liras, P., Leitao, A. L., and Martin, J. F. (1996) J. Biol. Chem., 271, 33225–33230.

    Article  CAS  PubMed  Google Scholar 

  32. Mendoza-Alvarez, H., and Alvarez-Gonzalez, R. (1993) J. Biol. Chem., 268, 22575–22580.

    CAS  PubMed  Google Scholar 

  33. Pion, E., Ullmann, G. M., Ame, J. C., Gerard, D., de Murcia, G., and Bombarda, E. (2005) Biochemistry, 44, 14670–14681.

    Article  CAS  PubMed  Google Scholar 

  34. Lavrik, O. I., Prasad, R., Sobol, R. W., Horton, J. K., Ackerman, E. J., and Wilson, S. H. (2001) J. Biol. Chem., 276, 25541–25548.

    Article  CAS  PubMed  Google Scholar 

  35. Sukhanova, M. V., Khodyreva, S. N., and Lavrik, O. I. (2006) Biochemistry (Moscow), 71, 736–748.

    Article  CAS  Google Scholar 

  36. Sukhanova, M., Khodyreva, S., and Lavrik, O. (2010) Mutat. Res., 685, 80–89.

    CAS  PubMed  Google Scholar 

  37. Woodhouse, B. C., Dianova, I. I., Parsons, J. L., and Dianov, G. L. (2008) DNA Repair, 7, 932–940.

    Article  CAS  PubMed  Google Scholar 

  38. Jorgensen, T. J. (2009) Cancer Bio. Ther., 8, 665–670.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Khodyreva.

Additional information

Original Russian Text © M. M. Kutuzov, E. S. Ilina, M. V. Sukhanova, I. A. Pyshnaya, D. V. Pyshnyi, O. I. Lavrik, S. N. Khodyreva, 2011, published in Biokhimiya, 2011, Vol. 76, No. 1, pp. 176–187.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kutuzov, M.M., Ilina, E.S., Sukhanova, M.V. et al. Interaction of poly(ADP-ribose) polymerase 1 with apurinic/apyrimidinic sites within clustered DNA damage. Biochemistry Moscow 76, 147–156 (2011). https://doi.org/10.1134/S0006297911010147

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297911010147

Key words

Navigation