Skip to main content
Log in

Nicking endonucleases

Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Nicking endonucleases are a new type of enzymes. Like restriction endonucleases, they recognize short specific DNA sequence and cleave DNA at a fixed position relatively to the recognition sequence. However, unlike restriction endonucleases, nicking endonucleases cleave only one predetermined DNA strand. Until recently, nicking endonucleases were suggested to be naturally mutated restriction endonucleases which had lost their ability to dimerize and as a result the ability to cleave the second strand. We have shown that nicking endonucleases are one of the subunits of heterodimeric restriction endonucleases. Mechanisms used by various restriction endonucleases for double-stranded cleavage, designing of artificial nicking endonucleases on the basis of restriction endonucleases, and application of nicking endonucleases in molecular biology are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

a.a.:

amino acid residue

bp:

base pairs

dNTP:

mixture of deoxynucleoside triphosphates

MTase:

DNA methyltransferase

NICKase:

nicking endonuclease

ORF:

open reading frame

PCR:

polymerase chain reaction

References

  1. Roberts, R. J., Belfort, M., Bestor, T., et al. (2003) Nucleic Acids Res., 31, 1805–1812.

    Article  CAS  PubMed  Google Scholar 

  2. Abdurashitov, M. A., Belichenko, O. A., Shevchenko, A. V., and Degtyarev, S. Kh. (1996) Mol. Biol. (Moscow), 30, 1261–1267.

    CAS  Google Scholar 

  3. Morgan, R. D., Calvet, C., Demeter, M., Agra, R., and Kong, H. (2000) Biol. Chem., 381, 1123–1125.

    Article  CAS  PubMed  Google Scholar 

  4. Zheleznaya, L. A., Perevyazova, T. A., Alzhanova, D. V., and Matvienko, N. I. (2001) Biochemistry (Moscow), 66, 989–993.

    Article  CAS  Google Scholar 

  5. Dedkov, V. S., Abdurashitov, M. A., Yankovsky, N. K., Kileva, E. V., Myakisheva, T. V., Popinchenko, D. V., Belichenko, O. A., and Degtyarev, S. Kh. (2001) Biotekhnologiya, 4, 3–8.

    Google Scholar 

  6. Higgins, L. S., Besnier, C., and Kong, H. (2001) Nucleic Acids Res., 29, 2492–2501.

    Article  CAS  PubMed  Google Scholar 

  7. Perevyazova, T. A., Rogulin, E. A., Zheleznaya, L. A., and Matvienko, N. I. (2003) Biochemistry (Moscow), 68, 984–987.

    Article  CAS  Google Scholar 

  8. Gololobova, N. S., Okhapkina, S. S., Abdurashitov, M. A., and Degtyarev, S. Kh. (2005) Mol. Biol. (Moscow), 39, 960–964.

    Article  Google Scholar 

  9. Yunusova, A. L., Rogulin, E. A., Artyukh, R. I., Zheleznaya, L. A., and Matvienko, N. I. (2006) Biochemistry (Moscow), 71, 815–818.

    Article  CAS  Google Scholar 

  10. Stahl, F., Wende, W., Wenz, C., Jeltsch, A., and Pingoud, A. (1998) Biochemistry, 37, 5682–5688.

    Article  CAS  PubMed  Google Scholar 

  11. Pingoud, A., and Jeltsch, A. (2001) Nucleic Acids Res., 29, 3705–3727.

    Article  CAS  PubMed  Google Scholar 

  12. Vanamee, E. S., Santagata, S., and Aggarwal, A. K. (2001) J. Mol. Biol., 309, 69–78.

    Article  CAS  PubMed  Google Scholar 

  13. Samuelson, J. C., Zhu, Z., and Xu, S. (2004) Nucleic Acids Res., 32, 3661–3671.

    Article  CAS  PubMed  Google Scholar 

  14. Zhu, Z., Samuelson, J. C., Zhou, J., Dore, A., and Xu, S.-Y. (2004) J. Mol. Biol., 237, 573–583.

    Article  Google Scholar 

  15. Armalyte, E., Bujnicki, J. M., Gledriene, J., Gasiunas, J., and Lubys, A. (2005) J. Biol. Chem., 280, 41584–41594.

    Article  CAS  PubMed  Google Scholar 

  16. Sapranauskas, R., Sasnauskas, G., Lagunavicius, A., Vilkaitis, G., Lubys, A., and Siksnys, V. (2000) J. Biol. Chem., 275, 30878–30885.

    Article  CAS  PubMed  Google Scholar 

  17. Sasnauskas, G., Halford, S. E., and Siksnys, V. (2003) Proc. Natl. Acad. Sci. USA, 100, 6410–6415.

    Article  CAS  PubMed  Google Scholar 

  18. Stankevicius, K., Lubys, A., Timinskas, A., Vaitkeicius, D., and Janulaitis, A. (1998) Nucleic Acids Res., 26, 1084–1091.

    Article  CAS  PubMed  Google Scholar 

  19. Hsieh, P.-C., Xiao, J.-P., O’Loane, D., and Xu, S.-Y. (2000) J. Bacteriol., 182, 945–955.

    Article  Google Scholar 

  20. Heiter, D. F., Lunnen, K. D., and Wilson, G. G. (2005) J. Mol. Biol., 348, 631–640.

    Article  CAS  PubMed  Google Scholar 

  21. Bellamy, S. R. W., Milsom, S. E., Scott, D. J., Daniels, L. E., Wilson, G. G., and Halford, S. E. (2005) J. Mol. Biol., 348, 641–653.

    Article  CAS  PubMed  Google Scholar 

  22. Xu, S. Y., Zhu, Z., Zhang, P., Chan, S. H., Samuelson, J. C., Xiao, J., Ingalls, D., and Wilson, G. G. (2007) Nucleic Acids Res., 35, 4608–4618.

    Article  CAS  PubMed  Google Scholar 

  23. Kachalova, G. S., Rogulin, E. A., Artyukh, R. I., Perevyazova, T. A., Zheleznaya, L. A., Matvienko, N. I., and Bartunik, H. D. (2005) Acta Crystal., F61, 332–334.

    CAS  Google Scholar 

  24. Kachalova, G. S., Rogulin, E. A., Yunusova, A. K., Artyukh, R. I., Perevyazova, T. A., Matvienko, N. I., Zheleznaya, L. A., and Bartunik, H. D. (2008) J. Mol. Biol., 348, 489–502.

    Article  Google Scholar 

  25. Wah, D. A., Hirsch, J. A., Dorner, L. F., Schildkraut, I., and Aggarwal, A. K. (1997) Nature, 388, 97–100.

    Article  CAS  PubMed  Google Scholar 

  26. Pingoud, A., and Jeltsch, A. (2001) Nucleic Acids Res., 29, 3705–3727.

    Article  CAS  PubMed  Google Scholar 

  27. Pingoud, A., Fuxreiter, M., Pingoud, V., and Wende, W. (2005) Cell. Mol. Life Sci., 62, 685–707.

    Article  CAS  PubMed  Google Scholar 

  28. Viadiu, H., and Aggarwal, A. K. (1998) Nat. Struct. Biol., 5, 910–916.

    Article  CAS  PubMed  Google Scholar 

  29. Kachalova, G. S., Yunusova, A. K., Artyukh, R. I., Rogulin, E. A., Perevyazova, T. A., Zheleznaya, L. A., Matvienko, N. I., and Bartunik, H. D. (2007) Acta Crystal., F63, 795–797.

    CAS  Google Scholar 

  30. Xu, Y., Lunnen, D., and Kong, H. (2001) Proc. Natl. Acad. Sci. USA, 96, 12990–12995.

    Article  Google Scholar 

  31. Demidov, V. V., Protozanova, E., Izvolsky, K. I., Price, C., Nielsen, P. E., and Frank-Kamenetskii, M. D. (2002) Proc. Natl. Acad. Sci. USA, 99, 15953–15958.

    Article  Google Scholar 

  32. Protozanova, E., Demidov, V. V., Soldatenkov, V., Chasovskikh, S., and Frank-Kamenetskii, M. D. (2002) EMBO Rep., 3, 956–961.

    Article  CAS  PubMed  Google Scholar 

  33. Nuovo, G. J. (2000) Diagn. Mol. Pathol., 9, 195–202.

    Article  CAS  PubMed  Google Scholar 

  34. Andras, S. C., Power, J. B., Cocking, E. C., and Davey, M. R. (2001) Mol. Biotechnol., 9, 29–44.

    Article  Google Scholar 

  35. Schweitzer, B., and Kingsmore, S. (2001) Curr. Opin. Biotechnol., 12, 21–27.

    Article  CAS  PubMed  Google Scholar 

  36. Walker, G. T., Little, M. C., Nadeau, J. G., and Shank, D. D. (1992) Proc. Natl. Acad. Sci. USA, 89, 392–396.

    Article  CAS  PubMed  Google Scholar 

  37. Hebert, M. L., and Wells, R. D. (2005) J. Mol. Biol., 353, 961–979.

    CAS  PubMed  Google Scholar 

  38. Bylund, G. O., and Burgers, P. M. (2005) Mol. Cell Biol., 25, 5445–5455.

    Article  CAS  PubMed  Google Scholar 

  39. Van Ness, J., van Ness, L. K., and Galas, D. J. (2003) Proc. Natl. Acad. Sci. USA, 100, 4504–4509.

    Article  PubMed  Google Scholar 

  40. Bath, J., Green, S. J., and Turberfield, A. J. (2005) Angew. Chem. Int. Ed., 44, 4358–4361.

    Article  CAS  Google Scholar 

  41. Tyagi, S., and Kramer, F. R. (1996) Nat. Biotechnol., 14, 303–308.

    Article  CAS  PubMed  Google Scholar 

  42. Zheleznaya, L. A., Perevyazova, T. A., Zheleznyakova, E. N., and Matvienko, N. I. (2002) Biochemistry (Moscow), 67, 498–502.

    Article  CAS  Google Scholar 

  43. Zheleznaya, L. A., Kopein, D. S., Rogulin, E. A., Gubanov, S. I., and Matvienko, N. I. (2006) Anal. Biochem., 248, 123–126.

    Article  Google Scholar 

  44. Kuhn, H., and Frank-Kamenetskii, M. D. (2008) Nucleic Acids Res., 36, e40.

    Article  PubMed  Google Scholar 

  45. Wang, L., Hall, J. G., Lu, M., Liu, Q., and Smith, L. M. A. (2001) Nat. Biotechnol., 19, 1053–1059.

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, X., Yan, H., Shen, Z., and Seeman, N. C. (2002) J. Am. Chem. Soc., 124, 12940–12941.

    Article  CAS  PubMed  Google Scholar 

  47. Chan, S.-H., Zhu, Z., van Etten, J. L., and Xu, S.-Y. (2004) Nucleic Acids Res., 32, 6187–6199.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Zheleznaya.

Additional information

Original Russian Text © L. A. Zheleznaya, G. S. Kachalova, R. I. Artyukh, A. K. Yunusova, T. A. Perevyazova, N. I. Matvienko, 2009, published in Uspekhi Biologicheskoi Khimii, 2009, Vol. 49, pp. 107–128.

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Cite this article

Zheleznaya, L.A., Kachalova, G.S., Artyukh, R.I. et al. Nicking endonucleases. Biochemistry Moscow 74, 1457–1466 (2009). https://doi.org/10.1134/S0006297909130033

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297909130033

Key words

Navigation