Skip to main content
Log in

In silico analysis of pectin lyase and pectinase sequences

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

A total of 48 full-length protein sequences of pectin lyases from different source organisms available in NCBI were subjected to multiple sequence alignment, domain analysis, and phylogenetic tree construction. A phylogenetic tree constructed on the basis of the protein sequences revealed two distinct clusters representing pectin lyases from bacterial and fungal sources. Similarly, the multiple accessions of different source organisms representing bacterial and fungal pectin lyases also formed distinct clusters, showing sequence level homology. The sequence level similarities among different groups of pectinase enzymes, viz. pectin lyase, pectate lyase, polygalacturonase, and pectin esterase, were also analyzed by subjecting a single protein sequence from each group with common source organism to tree construction. Four distinct clusters representing different groups of pectinases with common source organisms were observed, indicating the existing sequence level similarity among them. Multiple sequence alignment of pectin lyase protein sequence of different source organisms along with pectinases with common source organisms revealed a conserved region, indicating homology at sequence level. A conserved domain Pec_Lyase_C was frequently observed in the protein sequences of pectin lyases and pectate lyases, while Glyco_hydro_28 domains and Pectate lyase-like β-helix clan domain are frequently observed in polygalacturonases and pectin esterases, respectively. The signature amino acid sequence of 41 amino acids, i.e. TYDNAGVLPITVN-SNKSLIGEGSKGVIKGKGLRIVSGAKNI, related with the Pec_Lyase_C is frequently observed in pectin lyase protein sequences and might be related with the structure and enzymatic function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MEME:

Multiple EM for Motif Elicitation

NCBI:

National Center for Biotechnology Information

NJ:

Neighbor-Joining method

PCR:

polymerase chain reaction

PE:

pectin esterase

PG:

polygalacturonase

PL:

pectate lyase

PNL:

pectin lyase

UPGMA method:

Unweighted Pair Group method with Arithmetic Mean method

References

  1. Yadav, S., Yadav, P. K., Yadav, D., and Yadav, K. D. S. (2009) Process Biochem., 44, 1–10.

    Article  Google Scholar 

  2. Visser, J., Bussink, H. J., and Witteveen, C. (2004) in Gene Expression in Recombinant Microorganisms (Smith, A., ed.) Marcel Dekker, Inc., New York, pp. 241–306.

    Google Scholar 

  3. Cosgrove, D. J. (1997) Ann. Rev. Cell. Dev. Biol., 13, 171–201.

    Article  CAS  Google Scholar 

  4. Prade, R. A., Zohan, D., Ayoubi, P., and Mort, A. J. (1999) Biotechnol. Gene Eng. Rev., 16, 361–391.

    CAS  Google Scholar 

  5. Jayani, S. R., Saxena, S., and Gupta, R. (2005) Process Biochem., 40, 2931–2944.

    Article  CAS  Google Scholar 

  6. Luh, B. S., and Phaff, H. J. (1951) Arch. Biochem. Biophys., 33, 212–227.

    Article  CAS  Google Scholar 

  7. Gysler, C., Harmsen, J. A. M., Kester, H. C. M., Visser, J., and Heim, J. (1990) Gene, 89, 101–108.

    Article  PubMed  CAS  Google Scholar 

  8. Someren, M. A. K., Harmsen, J. A. M., Kester, H. C. M., and Visser, J. (1991) Curr. Gen., 20, 293–299.

    Article  Google Scholar 

  9. Someren, M. A. K., Flipphi, M., de Graaff, L., van den Broeck, H., Kester, H., Hinnen, A., and Visser, J. (1992) Mol. Gen. Genom., 234, 113–120.

    Google Scholar 

  10. Kitamoto, N., Yasuda, Y. S., Ohmiya, K., and Tsukagoshi, N. (2001) Biosci. Biotechnol. Biochem., 65, 209–212.

    Article  PubMed  CAS  Google Scholar 

  11. Templeton, M. D., Sharrock, K. R., Bowen, J. K., Crowhurst, R. N., and Rikkerink, E. H. (1994) Gene, 142, 141–146.

    Article  PubMed  CAS  Google Scholar 

  12. Kilara, A. (1982) Process Biochem., 23, 35–41.

    Google Scholar 

  13. Naidu, G. S. N., and Panda, T. (1998) Bioprocess. Eng., 9, 355–361.

    Article  Google Scholar 

  14. Alkorta, I., Garbisu, G., Llama, M. J., and Serra, J. L. (1998) Process Biochem., 33, 21–28.

    Article  CAS  Google Scholar 

  15. Blanco, P., Sieiro, C., Reboredo, N. M., and Villa, T. G. (1997) Arch. Microbiol., 167, 284–288.

    Article  PubMed  CAS  Google Scholar 

  16. Takebe, I., Otsuki, Y., and Aoki, S. (1968) Plant Cell Physiol., 9, 115–124.

    Google Scholar 

  17. Beldman, G., Rombouts, F. M., Voragen, A. G. J., and Pilnik, W. (1984) Enz. Microb. Technol., 6, 503–507.

    Article  CAS  Google Scholar 

  18. Whitaker, J. R. (1991) in Microbial Enzymes and Biotechnology (Fogarty, W. M., and Kelly, C. T., eds.) Elsevier Applied Science, London-New York, pp. 133–175.

    Google Scholar 

  19. Mayans, O., Scott, M., Connerton, I., Gravesen, T., Benen, J., Visser, J., Pickersgill, R., and Jenkins, J. (1997) Structure, 5, 677–689.

    Article  PubMed  CAS  Google Scholar 

  20. Vitali, J., Schick, B., Kester, H. C. M., Visser, J., and Jurnak, F. (1998) Plant Physiol., 116, 69–80.

    Article  PubMed  CAS  Google Scholar 

  21. Lassmann, T., and Sonnhammer, E. L. (2006) Nucleic Acids Res., 34 (Web Server Issue), W596-9.

  22. Kumar, S., Tamura, K., and Nei, M. (2004) Brief. Bioinformatics, 5, 150–163.

    Article  PubMed  CAS  Google Scholar 

  23. Saitou, N., and Nei, M. (1987) Mol. Biol. Evol., 4, 406–425.

    PubMed  CAS  Google Scholar 

  24. Shi, G. Y., Jie, T. Y., Bing, T. H., Hua, W. K., and Wei, C. K. (2007) Chin. J. Agric. Biotechnol., 4, 33–38.

    Article  Google Scholar 

  25. Timothy, L. B., and Gribskov, M. (1997) J. Comp. Biol., 4, 45–59.

    Article  Google Scholar 

  26. Timothy, L. B., and Gribskov, M. (1998) Bioinformatics, 14, 48–54.

    Article  Google Scholar 

  27. Yoder, M. D., Keen, N. T., and Jurnak, F. (1993) Science, 260, 1503–1507.

    Article  PubMed  CAS  Google Scholar 

  28. Lietzke, S. E., Yoder, M. D., Keen, N. T., and Jurnak, F. (1994) Plant Physiol., 106, 849–862.

    PubMed  CAS  Google Scholar 

  29. Pickersgill, R., Jenkins, J., Harris, G., Nasser, W., and Robert-Baudouy, J. (1994) Nat. Struct. Biol., 1, 717–723.

    Article  PubMed  CAS  Google Scholar 

  30. Herron, S. R., Benen, J. A. E., Scavetta, R. D., Visser, J., and Jurnak, F. (2000) Proc. Natl. Acad. Sci. USA, 97, 8762–8769.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Yadav.

Additional information

Published in Russian in Biokhimiya, 2009, Vol. 74, No. 9, pp. 1286–1293.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yadav, P.K., Singh, V.K., Yadav, S. et al. In silico analysis of pectin lyase and pectinase sequences. Biochemistry Moscow 74, 1049–1055 (2009). https://doi.org/10.1134/S0006297909090144

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297909090144

Key words

Navigation