Skip to main content
Log in

Do we need many genes for phylogenetic inference?

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Fifty-six nuclear protein coding genes from Taxonomically Broad EST Database and other databases were selected for phylogenomic-based examination of alternative phylogenetic hypotheses concerning intergroup relationship between multicellular animals (Metazoa) and other representatives of Opisthokonta. The results of this work support sister group relationship between Metazoa and Choanoflagellata. Both of these groups form the taxon Holozoa along with the monophyletic Ichthyosporea or Mesomycetozoea (a group that includes Amoebidium parasiticum, Sphaeroforma arctica, and Capsaspora owczarzaki). These phylogenetic hypotheses receive high statistical support both when utilizing whole alignment and when only 5000 randomly selected alignment positions are used. The presented results suggest subdivision of Fungi into Eumycota and lower fungi, Chytridiomycota. The latter form a monophyletic group that comprises Chytridiales + Spizellomycetales + Blastocladiales (Batrachochytrium, Spizellomyces, Allomyces, Blastocladiella), contrary to the earlier reports based on the analysis of 18S rRNA and a limited set of protein coding genes. The phylogenetic distribution of genes coding for a ubiquitin-fused ribosomal protein S30 implies at least three independent cases of gene fusion: in the ancestors of Holozoa, in heterotrophic Heterokonta (Oomycetes and Blastocystis), and in the ancestors of Cryptophyta and Glaucophyta. Ubiquitin-like sequences fused with ribosomal protein S30 outside of Holozoa are not FUBI orthologs. Two independent events of FUBI replacement by the ubiquitin sequence were detected in the lineage of C. owczarzaki and in the monophyletic group of nematode worms Tylenchomorpha + Cephalobidae. Bursaphelenchus xylophilus (Aphelenchoidoidea) retains a state typical of the rest of the Metazoa. The data emphasize the fact that the reliability of phylogenetic reconstructions depends on the number of analyzed genes to a lesser extent than on our ability to recognize reconstruction artifacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

eEF1A:

eukaryotic elongation factor 1A

EFL:

elongation factor-like (a paralog of elongation factor 1A)

FUBI:

ubiquitin-like peptide fused with S30 ribosomal protein of animals and other Holozoa

Hsp:

heat shock protein, chaperon

RpL:

ribosomal protein of large ribosomal subunit

RpS:

ribosomal protein of small ribosomal subunit

tef:

gene of elongation factor 1A

References

  1. Spirin, A. S., Belozersky, A. N., Shugaeva, N. V., and Vanyushin, B. F. (1957) Biokhimiya, 22, 744–754.

    CAS  Google Scholar 

  2. Beklemishev, V. N. (1994) Methodology of Systematics [in Russian], KMK Publishing House, Moscow.

    Google Scholar 

  3. Hennig, W. (1966) Phylogenetic Systematics, Illinois University Press, Urbana.

    Google Scholar 

  4. Shatalkin, A. I. (1988) Biological Systematics [in Russian], Moscow State University Publishing House, Moscow.

    Google Scholar 

  5. Pavlinov, I. Ya. (2005) Introduction into Modern Phylogenetics (Cladogenetic Analysis) [in Russian], KMK Publishing House, Moscow.

    Google Scholar 

  6. Baldauf, S. L., and Palmer, J. D. (1991) Proc. Natl. Acad. Sci. USA, 90, 11558–11562.

    Article  Google Scholar 

  7. Petrov, N. B., and Aleshin, V. V. (2002) Genetika, 38, 1043–1062.

    PubMed  CAS  Google Scholar 

  8. Moreira, D., von der Heyden, S., Bass, D., Lopez-Garcia, P., Chao, E., and Cavalier-Smith, T. (2007) Mol. Phylogenet. Evol., 44, 255–266.

    Article  PubMed  CAS  Google Scholar 

  9. Cavalier-Smith, T., and Chao, E. E.-Y. (2003) Protist, 154, 341–358.

    Article  PubMed  Google Scholar 

  10. Shatalkin, A. I. (2005) Zh. Obshch. Biol., 66, 389–415.

    PubMed  CAS  Google Scholar 

  11. Steenkamp, E. T., Wright, J., and Baldauf, S. L. (2006) Mol. Biol. Evol., 23, 93–106.

    Article  PubMed  CAS  Google Scholar 

  12. Philip, G. K., Creevey, C. J., and McInerney, J. O. (2005) Mol. Biol. Evol., 22, 1175–1184.

    Article  PubMed  CAS  Google Scholar 

  13. Seravin, L. N., and Gudkov, A. V. (2005) Zh. Obshch. Biol., 66, 212–223.

    PubMed  CAS  Google Scholar 

  14. Stechmann, A., and Cavalier-Smith, T. (2002) Science, 297, 89–91.

    Article  PubMed  CAS  Google Scholar 

  15. Keeling, P. J., and Inagaki, Y. (2004) Proc. Natl. Acad. Sci. USA, 101, 15380–15385.

    Article  PubMed  CAS  Google Scholar 

  16. King, N., and Carroll, S. B. (2001) Proc. Natl. Acad. Sci. USA, 98, 15032–15037.

    Article  PubMed  CAS  Google Scholar 

  17. Jeffroy, O., Brinkmann, H., Delsuc, F., and Philippe, H. (2006) Trends Genet., 22, 225–231.

    Article  PubMed  CAS  Google Scholar 

  18. Felsenstein, J. (1978) Syst. Zool., 27, 401–410.

    Article  Google Scholar 

  19. Lang, B. F., O’Kelly, C., Nerad, T., Gray, M. W., and Burger, G. (2002) Curr. Biol., 12, 1773–1778.

    Article  PubMed  CAS  Google Scholar 

  20. Medina, M., Collins, A. G., Taylor, J. W., Valentine, J. W., Lipps, J. H., Amaral-Zettler, L., and Sogin, M. L. (2003) Int. J. Astrobiol., 2, 203–211.

    Article  Google Scholar 

  21. Ruiz-Trillo, I., Inagaki, Y., Davis, L. A., Sperstad, S., Landfald, B., and Roger, A. J. (2004) Curr. Biol., 14, R946–R947.

    Article  PubMed  CAS  Google Scholar 

  22. Ruiz-Trillo, I., Lane, C. E., Archibald, J. M., and Roger A. J. (2006) J. Eukaryot. Microbiol., 53, 379–384.

    Article  PubMed  CAS  Google Scholar 

  23. Hertel, L. A., Bayne, C. J., and Loker, E. S. (2003) Int. J. Parasitol., 32, 1183–1191.

    Article  Google Scholar 

  24. Jimenez-Guri, E., Philippe, H., Okamura, B., and Holland, P. W. (2007) Science, 317, 116–118.

    Article  PubMed  CAS  Google Scholar 

  25. Ruiz-Trillo, I., Burger, G., Holland, P. W., King, N., Lang, B. F., Roger, A. J., and Gray, M. W. (2007) Trends Genet., 23, 113–118.

    Article  PubMed  CAS  Google Scholar 

  26. Lutzoni, F., Kauff, F., Cox, C. J., McLaughlin, D., et al. (2004) Am. J. Bot., 91, 1446–1480.

    Google Scholar 

  27. James, T. Y., Kauff, F., Schoch, C., Matheny, P. B., et al. (2006) Nature, 443, 818–822.

    Article  PubMed  CAS  Google Scholar 

  28. Kishino, H., and Hasegawa, M. (1989) J. Mol. Evol., 29, 170–179.

    Article  PubMed  CAS  Google Scholar 

  29. Shimodaira, H., and Hasegawa, M. (1999) Mol. Biol. Evol., 16, 1114–1116.

    CAS  Google Scholar 

  30. Shimodaira, H., and Hasegawa, M. (2001) Bioinformatics, 17, 1246–1247.

    Article  PubMed  CAS  Google Scholar 

  31. Felsenstein, J. (1993) PHYLIP (Phylogeny Inference Package) version 3.5c, Department of Genetics, University of Washington, Seattle.

    Google Scholar 

  32. Philippe, H. (1993) Nucleic Acids Res., 21, 5264–5272.

    Article  PubMed  CAS  Google Scholar 

  33. Logacheva, M. D., Penin, A. A., Samigullin, T. Y., Vallejo-Roman, C. M., and Antonov, A. S. (2007) Biochemistry (Moscow), 72, 1324–1330.

    Google Scholar 

  34. Kas, K., Michiels, L., and Merregaert, J. (1992) Biochem. Biophys. Res. Commun., 187, 927–933.

    Article  PubMed  CAS  Google Scholar 

  35. Perina, D., Cetkovic, H., Harcet, M., Premzl, M., Lukic-Bilela, L., Muller, W. E., and Gamulin, V. (2006) Gene, 366, 275–284.

    Article  PubMed  CAS  Google Scholar 

  36. Baker, R. T., Williamson, N. A., and Wettenhall, R. E. (1996) J. Biol. Chem., 271, 13549–13555.

    Article  PubMed  CAS  Google Scholar 

  37. Jones, D., and Candido, E. P. (1993) J. Biol. Chem., 268, 19545–19551.

    PubMed  CAS  Google Scholar 

  38. Meldal, B. H., Debenham, N. J., De Ley, P., De Ley, I. T., Vanfleteren, J. R., Vierstraete, A. R., Bert, W., Borgonie, G., Moens, T., Tyler, P. A., Austen, M. C., Blaxter, M. L., Rogers, A. D., and Lambshead, P. J. (2007) Mol. Phylogenet. Evol., 42, 622–636.

    Article  PubMed  CAS  Google Scholar 

  39. Drozdovskii, E. M. (1968) Dokl. AN SSSR, 180, 750–753.

    CAS  Google Scholar 

  40. Finley, D., Bartel, B., and Varshavsky, A. (1989) Nature, 338, 394–401.

    Article  PubMed  CAS  Google Scholar 

  41. Rossman, T. G., Visalli, M. A., and Komissarova, E. V. (2003) Oncogene, 22, 1817–1821.

    Article  PubMed  CAS  Google Scholar 

  42. Burki, F., Shalchian-Tabrizi, K., Minge, M., Skjaeveland, A., Nikolaev, S. I., Jakobsen, K. S., and Pawlowski, J. (2007) PLoS ONE, 2, e790.

    Article  PubMed  Google Scholar 

  43. Rodriguez-Ezpeleta, N., Brinkmann, H., Burger, G., Roger, A. J., Gray, M. W., Philippe, H., and Lang, B. F. (2007) Curr Biol., 17, 1420–1425.

    Article  PubMed  CAS  Google Scholar 

  44. Cavalier-Smith, T., and Chao, E. E-Y. (2006) J. Mol. Evol., 62, 388–420.

    Article  PubMed  CAS  Google Scholar 

  45. Bhattacharya, D., Helmchen, T., Bibeau, C., and Melkonian, M. (1995) Mol. Biol. Evol., 12, 415–420.

    PubMed  CAS  Google Scholar 

  46. Hoef-Emden, K., Marin, B., and Melkonian, M. (2002) J. Mol. Evol., 55, 161–179.

    Article  PubMed  CAS  Google Scholar 

  47. Deane, J. A., Strachan, I. M., Saunders, G. W., Hill, D. R. A., and McFadden, G. I. (2002) J. Phycol., 38, 1529–8817.

    Article  Google Scholar 

  48. Bourlat, S. J., Juliusdottir, T., Lowe, C. J., Freeman, R., Aronowicz, J., Kirschner, M., Lander, E. S., Thorndyke, M., Nakano, H., Kohn, A. B., Heyland, A., Moroz, L. L., Copley, R. R., and Telford, M. J. (2006) Nature, 444, 85–88.

    Article  PubMed  CAS  Google Scholar 

  49. Baurain, D., Brinkmann, H., and Philippe, H. (2006) Mol. Biol. Evol., 24, 6–9.

    Article  PubMed  Google Scholar 

  50. Samigullin, T. K., Yacentyuk, S. P., Degtyaryeva, G. V., Valiehoroman, K. M., Bobrova, V. K., Capesius, I., Martin, W. F., Troitsky, A. V., Filin, V. R., and Antonov, A. S. (2002) Arctoa, 11, 31–43.

    Google Scholar 

  51. Qiu, Y. L., Li, L., Wang, B., Chen, Z., Knoop, V., Groth-Malonek, M., Dombrovska, O., Lee, J., Kent, L., Rest, J., Estabrook, G. F., Hendry, T. A., Taylor, D. W., Testa, C. M., Ambros, M., Crandall-Stotler, B., Duff, R. J., Stech, M., Frey, W., Quandt, D., and Davis, C. C. (2006) Proc. Natl. Acad. Sci. USA, 103, 15511–15516.

    Article  PubMed  CAS  Google Scholar 

  52. Rokas, A., Williams, B. L., King, N., and Carroll, S. B. (2003) Nature, 425, 798–804.

    Article  PubMed  CAS  Google Scholar 

  53. Philippe, H., Lartillot, N., and Brinkmann, H. (2005) Mol. Biol. Evol., 22, 1246–1253.

    Article  PubMed  CAS  Google Scholar 

  54. Dopazo, H., Santoyo, J., and Dopazo, J. (2004) Bioinformatics, 20(Suppl. 1), i116–i121.

    Article  PubMed  CAS  Google Scholar 

  55. Degtjareva, G. V., Samigullin, T. Y., Sokoloff, D. D., and Vallejo-Roman, C. M. (2004) Botan. J., 89, 896–907.

    Google Scholar 

  56. Rokas, A., and Holland, P. W. H. (2000) Trends Ecol. Evol., 15, 454–459.

    Article  PubMed  Google Scholar 

  57. Schmidt, H. A., Strimmer, K., Vingron, M., and von Haeseler, A. (2002) Bioinformatics, 18, 502–504.

    Article  PubMed  CAS  Google Scholar 

  58. Huelsenbeck, J. P., and Ronquist, F. (2001) Bioinformatics, 17, 754–755.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Aleshin.

Additional information

Original Russian Text © V. V. Aleshin, A. V. Konstantinova, K. V. Mikhailov, M. A. Nikitin, N. B. Petrov, 2007, published in Biokhimiya, 2007, Vol. 72, No. 12, pp. 1610–1623.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aleshin, V.V., Konstantinova, A.V., Mikhailov, K.V. et al. Do we need many genes for phylogenetic inference?. Biochemistry Moscow 72, 1313–1323 (2007). https://doi.org/10.1134/S000629790712005X

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629790712005X

Key words

Navigation