Skip to main content
Log in

Primary chemical reactions induced by radioactive nuclear transformations

  • Proceedings of the Conference “Physics of Fundamental Interactions” Dedicated to the 100th Anniversary of A. I. Alikhanov’s Birth, Section of Nuclear Physics, Division of Physical Sciences, Russian Academy of Sciences; Institute of Theoretical and Experimental Physics, Moscow, March 1–5, 2004
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

A series of chemical reactions is suggested to describe primary chemical transformations induced by Auger electrons from radioactive nuclear decay in glassy and crystalline frozen aqueous media. The mechanism is based on Mössbauer emission spectroscopy data supplemented by data on reactions in the tracks of fast positrons and electrons in an aqueous medium. It is shown that variation of temperature, the degree of crystallinity, the concentration of electron acceptors, etc., results in correlated changes in the yields of the final reaction products—Fe2+, Fe3+ or Sn2+, Sn4+ ions, positronium atoms, and molecular radiolytic hydrogen. These correlations indicate the similarity of chemical processes in the nanometer vicinity of decayed 57Co and 119mSn nuclei and in the tracks of fast positrons and electrons. This similarity is caused by the same behavior of secondary intratrack electrons produced due to ionization losses of fast positrons, electrons, and Auger electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mössbauer Spectroscopy of Frozen Solutions, Ed. by A. Vértes and D. L. Nady (Académiai Kiadó, Budapest, 1990; Mir, Moscow, 1998).

    Google Scholar 

  2. A. K. Pikaev, Modern Radiation Chemistry. Basic Principles. Experimental Technique and Methods (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  3. V. M. Byakov and F. G. Nichiporov, Intratrack Chemical Processes (Énergoatomizdat, Moscow, 1985) [in Russian].

    Google Scholar 

  4. Principles and Applications of Positron and Positronium Chemistry, Ed. by Y. C. Jean, P. E. Mallone, and D. M. Schrader (World Sci., Singapore, 2003).

    Google Scholar 

  5. J. M. Friedt and J. Danon, At. Energy Rev. 184, 893 (1980).

    Google Scholar 

  6. Yu. D. Perfil’ev, Izv. Ross. Akad. Nauk, Ser. Fiz. 63, 1383 (1999).

    Google Scholar 

  7. H. Pollak, Phys. Status Solidi 2, 720 (1961).

    MathSciNet  Google Scholar 

  8. L. A. Kulikov, L. T. Bugaenko, Yu. D. Perfil’ev, and A. M. Babeshkin, Vestn. Mosk. Univ., Ser. 2: Khim., No. 3, 347 (1972).

  9. Yu. D. Perfil’ev, L. A. Kulikov, V. M. Byakov, et al., Khim. Vys. Energ. 37, 390 (2003) [High Energy Chem. 37, 345 (2003)].

    Google Scholar 

  10. S. I. Bondarevskii and N. E. Ablesimov, Khim. Vys. Energ. 11, 285 (1977) [High Energy Chem. 11, 239 (1977)].

    Google Scholar 

  11. A. Namiki, M. Noda, and T. Higashimura, J. Phys. Chem. 79, 2975 (1975).

    Article  Google Scholar 

  12. J. H. Baxendale and P. Wardman, J. Chem. Soc., Faraday Trans. 1 3, 584 (1973).

    Google Scholar 

  13. V. M. Byakov, J. Phys. IV, Colloq. C4, Suppl. II 3, 85 (1993).

    Google Scholar 

  14. Yu. D. Perfiliev, L. A. Kulikov, L. T. Bugaenko, et al., J. Inorg. Nucl. Chem. 36, 2115 (1976).

    Google Scholar 

  15. K. Y. Lam and J. W. Hunt, Int. J. Radiat. Phys. Chem. 7, 317 (1975).

    Article  Google Scholar 

  16. V. M. Byakov, V. I. Grafutin, O. V. Koldaeva, et al., Preprint ITÉF-37 (Institute of Theoretical and Experimental Physics, Moscow, 1984).

  17. G. P. Chernova, B. G. Ershov, and A. K. Pikaev, Izv. Akad. Nauk SSSR, Ser. Khim., No. 1, 43 (1970).

  18. M. Faraggi, Int. J. Radiat. Phys. Chem. 5, 197 (1973).

    Article  Google Scholar 

  19. Ya. M. Mil’grom, Yu. D. Perfil’ev, and A. M. Babeshkin, Khim. Vys. Energ. 12, 272 (1978).

    Google Scholar 

  20. B. Levay and P. Hautojarvi, J. Phys. Chem. 76, 1951 (1972).

    Article  Google Scholar 

  21. E. Hart and M. Anbar, The Hydrated Electron (Wiley, New York, 1970; Atomizdat, Moscow, 1973).

    Google Scholar 

  22. CRC Handbook of Chemistry and Physics, 78th ed., Ed. by D. R. Lide (CRC Press, Boca Raton; New York, 1998).

    Google Scholar 

  23. Yu. D. Perfil’ev, L. A. Kulikov, and A. M. Babeshkin, Zh. Fiz. Khim. 52, 1631 (1978) [Russ. J. Phys. Chem. 82, 1045 (1978)].

    Google Scholar 

  24. V. M. Byakov and S. V. Stepanov, Nukleonika 42, 45 (1997).

    Google Scholar 

  25. S. J. Tao and J. H. Green, J. Phys. Chem. 73, 882 (1969).

    Article  Google Scholar 

  26. J. W. Boyle, Radiat. Res. 17, 427 (1962).

    Google Scholar 

  27. D. Katakis and A. O. Allen, J. Phys. Chem. 68, 3107 (1964).

    Google Scholar 

  28. M. Domae, Y. Katsumura, K. Ishigure, and V. M. Byakov, Radiat. Phys. Chem. 48, 487 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Yadernaya Fizika, Vol. 68, No. 6, 2005, pp. 1054–1063.

Original Russian Text Copyright © 2005 by Byakov, Kulikov, Perfil’ev, Stepanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byakov, V.M., Kulikov, L.A., Perfil’ev, Y.D. et al. Primary chemical reactions induced by radioactive nuclear transformations. Phys. Atom. Nuclei 68, 1016–1024 (2005). https://doi.org/10.1134/1.1954828

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1954828

Keywords

Navigation