Skip to main content
Log in

Review Article: Cyclic AMP Sensors in Living Cells: What Signals Can They Actually Measure?

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Cyclic AMP is a ubiquitous intracellular second messenger that transmits information to several proteins including cyclic nucleotide-gated ion channels and protein kinase A (PKA). In turn, these effectors regulate such diverse cellular functions as Ca2+ influx, excitability, and gene expression, as well as cell-specific processes such as glycogenolysis and lipolysis. The enzymes known to regulate cAMP levels, adenylyl cyclase and phosphodiesterase, have been studied in detail. Unfortunately, an understanding of how information is encoded within cAMP signals has been elusive, because, until recently, methods for measuring cAMP lacked both spatial and temporal resolution. In this paper, we describe two recently developed methods for detecting cAMP levels in living cells. The first method measures fluorescence energy transfer between labeled subunits of PKA. This method is particularly useful for monitoring cellular localization of PKA activity following increases in cAMP levels. However, the slow activation and deactivation rates, the necessarily high concentrations of labeled subunits, and the redistribution of labeled subunits throughout the cell, all intrinsic to this method, limit its utility as a cAMP sensor. The second method uses genetically modified cyclic nucleotide-gated channels to measure plasma membrane-localized cAMP levels in either cell populations or single cells. The rapid gating kinetics of these channels allow real-time measurement of cAMP concentrations. These methods have given us the first glimpses of cAMP signals within living cells. © 2002 Biomedical Engineering Society.

PAC2002: 8716Uv, 8780-y, 8716Sr

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Adams, S., B. Bacskai, A. T. Harootunian, M. Mahaut-Smith, P. J. Sammak, S. S. Taylor, and R. Y. Tsien. Imaging of cAMP signals and A-kinase translocation in single living cells. Adv. Second Messenger Phosphoprotein Res. 28:167-170, 1993.

    Google Scholar 

  2. Adams, S. R., A. T. Harootunian, Y. J. Buechler, S. S. Taylor, and R. Y. Tsien. Fluorescence ratio imaging of cyclic AMP in single cells. Nature (London) 349:694-697, 1991.

    Google Scholar 

  3. Allen, D. G., D. A. Eisner, and C. H. Orchard. Characterization of oscillations of intracellular calcium concentration in ferret ventricular muscle. J. Physiol. 352:113-128, 1984.

    Google Scholar 

  4. Bacskai, B. J., B. Hochner, M. Mahaut-Smith, S. R. Adams, B. K. Kaang, E. R. Kandel, and R. Y. Tsien. Spatially resolved dynamics of cAMP and protein kinase A subunits in aplysia sensory neurons. Science 260:222-226, 1993.

    Google Scholar 

  5. Beavo, J. A. Cyclic nucleotide phosphodiesterases: Functional implications of multiple isoforms. Physiol. Rev. 75:725-748, 1995.

    Google Scholar 

  6. Beavo, J. A., P. J. Bechtel, and E. G. Krebs. Activation of protein kinase by physiological concentrations of cyclic AMP. Proc. Natl. Acad. Sci. U.S.A. 71:3580-3583, 1974.

    Google Scholar 

  7. Berridge, M. J., P. H. Cobbold, and K. S. Cuthbertson. Spatial and temporal aspects of cell signalling. Philos. Trans. R. Soc. London, Ser. B 320:325-343, 1988.

    Google Scholar 

  8. Brooker, G. Oscillation of cyclic adenosine monophosphate concentration during the myocardial contraction cycle. Science 182:933-934, 1973.

    Google Scholar 

  9. Brostrom, C. O., J. D. Corbin, C. A. King, and E. G. Krebs. Interaction of the subunits of adenosine 38:58-cyclic monophosphate-dependent protein kinase of muscle. Proc. Natl. Acad. Sci. U.S.A. 68:2444-2447, 1971.

    Google Scholar 

  10. Brown, R. L., R. Gramling, R. J. Bert, and J. W. Karpen. Cyclic GMP contact points within the 63 kDa subunit and a 240 kDa associated protein of retinal rod cGMP-activated channels. Biochemistry 34:8365-8370, 1995.

    Google Scholar 

  11. Brown, R. L., S. D. Snow, and T. L. Haley. Movement of gating machinery during the activation of rod cyclic nucleotide-gated channels. Biophys. J. 75:825-833, 1998.

    Google Scholar 

  12. Brunton, L. L., J. S. Hayes, and S. E. Mayer. Functional compartmentation of cAMP and protein kinase in heart. Adv. Cyclic Nucleotide Res. 14:391-397, 1981.

    Google Scholar 

  13. Chen-Izu, Y., R. P. Xiao, L. T. Izu, H. Cheng, M. Kuschel, H. Spurgeon, and E. G. Lakatta. G i-dependent localization of ? 2-adrenergic receptor signaling to L-type Ca2+ channels. Biophys. J. 79:2547-2556, 2000.

    Google Scholar 

  14. Cooper, D. M. F., N. Mons, and J. W. Karpen. Adenylyl cyclases and the interaction between calcium and cAMP signaling. Nature (London) 374:421-424, 1995.

    Google Scholar 

  15. Cuthbertson, K. S., D. G. Whittingham, and P. H. Cobbold. Free Ca2+ increases in exponential phases during mouse oocyte activation. Nature (London) 294:754-757, 1981.

    Google Scholar 

  16. Davare, M. A., V. Avdonin, D. D. Hall, E. M. Peden, A. Burette, R. J. Weinberg, M. C. Horne, T. Hoshi, and J. W. Hell. A ? 2 adrenergic receptor signaling complex assembled with the Ca2+ channel Cav1.2. Science 293:98-101, 2001.

  17. De Koninck, P., and H. Schulman. Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. Science 279:227-230, 1998.

    Google Scholar 

  18. de Rooij, J., F. J. Zwartkruis, M. H. Verheijen, R. H. Cool, S. M. Nijman, A. Wittinghofer, and J. L. Bos. Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature (London) 396:474-477, 1998.

    Google Scholar 

  19. DeBernardi, M. A., and G. Brooker. Single cell Ca2+/cAMP cross talk monitored by simultaneous Ca2+/cAMP fluorescence ratio imaging. Proc. Natl. Acad. Sci. U.S.A. 93:4577-4582, 1996.

    Google Scholar 

  20. Detlev, S., and D. Restrepo. Transduction mechanisms in vertebrate olfactory receptor cells. Physiol. Rev. 78:429-466, 1998.

    Google Scholar 

  21. Dhallan, R. S., K.-W. Yau, K. A. Schrader, and R. R. Reed. Primary structure and functional expression of a cyclic nucleotide-activated channel from olfactory neurons. Nature (London) 347:184-187, 1990.

    Google Scholar 

  22. DiFrancesco, D. Pacemaker mechanisms in cardiac tissue. Annu. Rev. Physiol. 55:455-472, 1993.

    Google Scholar 

  23. Dolmetsch, R. E., K. Xu, and R. S. Lewis. Calcium oscillations increase the efficiency and specificity of gene expression. Nature (London) 392:933-936, 1998.

    Google Scholar 

  24. Doskeland, S. O., and D. Ogreid. Characterization of the interchain and intrachain interactions between the binding sites of the free regulatory moiety of protein kinase I. J. Biol. Chem. 259:2291-2301, 1984.

    Google Scholar 

  25. Fagan, K. A., T. C. Rich, S. Tolman, J. Schaack, J. W. Karpen, and D. M. F. Cooper. Adenovirus-mediated expression of an olfactory cyclic nucleotide-gated channel regulates the endogenous Ca2+-inhibitable adenylyl cyclase in C6-2B glioma cells. J. Biol. Chem. 274:12445-12453, 1999.

    Google Scholar 

  26. Fagan, K. A., J. Schaack, A. Zweifach, and D. M. F. Cooper. Adenovirus encoded cyclic nucleotide-gated channels: A new methodology for monitoring cAMP in living cells. FEBS Lett. 500:85-90, 2001.

    Google Scholar 

  27. Fesenko, E. E., S. S. Kolesnikov, and A. L. Lyubarsky. Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature (London) 313:310-313, 1985.

    Google Scholar 

  28. Fewtrell, C. Ca2+ oscillations in nonexcitable cells. Annu. Rev. Physiol. 55:427-454, 1993.

    Google Scholar 

  29. Finn, J. T., M. E. Grunwald, and K.-W. Yau. Cyclic nucleotide-gated ion channels: An extended family with diverse functions. Annu. Rev. Physiol. 58:395-426, 1996.

    Google Scholar 

  30. Francis, S., and J. D. Corbin. Cyclic nucleotide-dependent protein kinases: Intracellular receptors for cAMP and cGMP action. Crit. Rev. Clin. Lab Sci. 36:275-328, 1999.

    Google Scholar 

  31. Goaillard, J. M., P. V. Vincent, and R. Fischmeister. Simultaneous measurements of intracellular cAMP and L-type Ca2+ current in single frog ventricular myocytes. J. Physiol. 530:79-91, 2001.

    Google Scholar 

  32. Gorbunova, Y. V., and N. C. Spitzer. Dynamic interactions of cyclic AMP transients and spontaneous Ca2+ spikes. Nature (London) 418:93-96, 2002.

    Google Scholar 

  33. Gordon, S. E., M. D. Varnum, and W. N. Zagotta. Direct interaction between amino-and carboxyl-terminal domains of cyclic nucleotide-gated channels. Neuron 19:431-441, 1997.

    Google Scholar 

  34. Gray, P. C., J. D. Scott, and W. A. Catterall. Regulation of ion channels by cAMP-dependent protein kinase and A-kinase anchoring proteins. Curr. Opin. Neurobiol. 8:330-334, 1998.

    Google Scholar 

  35. Hagen, V., C. Dzeja, S. Frings, J. Bendig, E. Krause, and U. B. Kaupp. Caged compounds of hydrolysis-resistant analogues of cAMP and cGMP: Synthesis and application to cyclic nucleotide-gated channels. Biochemistry 35:7762-7771, 1996.

    Google Scholar 

  36. Hall, D. D., and J. W. Hell. The fourth dimension in cellular signaling-Response. Science 293:2205, 2001.

    Google Scholar 

  37. Hanson, P. I., T. Meyer, L. Stryer, and H. Schulman. Dual role of calmodulin in autophosphorylation of multifunctional CaM kinase may underlie decoding of calcium signals. Neuron 12:943-956, 1994.

    Google Scholar 

  38. Harootunian, A. T., S. R. Adams, W. Wen, J. L. Meinkoth, S. S. Taylor, and R. Y. Tsien. Movement of the free catalytic subunit of cAMP-dependent protein kinase into and out of the nucleus can be explained by diffusion. Mol. Biol. Cell 4:993-1002, 1993.

    Google Scholar 

  39. Hempel, C. M., P. Vincent, S. R. Adams, R. Y. Tsien, and A. I. Selverston. Spatiotemporal dynamics of cyclic AMP signals in an intact neural circuit. Nature (London) 384:166-169, 1996.

    Google Scholar 

  40. Hofmann, F., P. J. Bechtel, and E. G. Krebs. Concentrations of cyclic AMP-dependent protein kinase subunits in various tissues. J. Biol. Chem. 252:1441-1447, 1977.

    Google Scholar 

  41. Houge, G., R. A. Steinberg, D. Ogreid, and S. O. Doskeland. The rate of recombination of the subunits (RI and C) of cAMP-dependent protein kinase depends on whether one or two cAMP molecules are bound per RI monomer. J. Biol. Chem. 265:19507-19516, 1990.

    Google Scholar 

  42. Jurevicius, J., and R. Fischmeister. cAMP compartmentation is responsible for a local activation of cardiac Ca2+ channels by b-adrenergic agonists. Proc. Natl. Acad. Sci. U.S.A. 93:295-299, 1996.

    Google Scholar 

  43. Karpen, J. W., and T. C. Rich. The fourth dimension in cellular signaling. Science 293:2204-2205, 2001.

    Google Scholar 

  44. Karpen, J. W., A. L. Zimmerman, L. Stryer, and D. A. Baylor. Gating kinetics of the cyclic-GMP-activated channel of retinal rods: Flash photolysis and voltage-jump studies. Proc. Natl. Acad. Sci. U.S.A. 85:1287-1291, 1988.

    Google Scholar 

  45. Kurahashi, T., and A. Kaneko. Gating properties of the cAMP-gated channel in toad olfactory receptor cells. J. Physiol. 466:287-302, 1993.

    Google Scholar 

  46. Li, J., and H. A. Lester. Single-channel kinetics of the rat olfactory cyclic nucleotide-gated channel expressed in Xenopus oocytes. Mol. Pharmacol. 55:883-893, 1999.

    Google Scholar 

  47. Liu, M., T. Y. Chen, B. Ahamed, J. Li, and K.-W. Yau. Calcium-calmodulin modulation of the olfactory cyclic nucleotide-gated cation channel. Science 266:1348-1354, 1994.

    Google Scholar 

  48. Lowe, G., and G. H. Gold. Nonlinear amplification by calcium-dependent chloride channels in olfactory receptor cells. Nature (London) 366:283-286, 1993.

    Google Scholar 

  49. Mehats, C., C. B. Andersen, M. Filopanti, S. L. Jin, and M. Conti. Cyclic nucleotide phosphodiesterases and their role in endocrine cell signaling. TRENDS Endocrinol. Metab. 13:29-35, 2002.

    Google Scholar 

  50. Molday, R. S. Photoreceptor membrane proteins, phototransduction, and retinal degenerative diseases: The Friedenwald Lecture. Invest. Ophthalmol. Visual Sci. 39:2493-2513, 1998.

    Google Scholar 

  51. Mons, N., A. Harry, P. Dubourg, R. T. Premont, R. Iyengar, and D. M. F. Cooper. Immunohistochemical localization of adenylyl cyclase in rat brain indicates a highly selective concentration at synapses. Proc. Natl. Acad. Sci. U.S.A. 92:8473-8477, 1995.

    Google Scholar 

  52. Nakamura, T., and G. H. Gold. A cyclic nucleotide-gated conductance in olfactory receptor cilia. Nature (London) 325:442-444, 1987.

    Google Scholar 

  53. O'Dea, R. F., M. K. Haddox, and N. D. Goldberg. Interaction with phosphodiesterase of free and kinase-complexed cyclic adenosine 38,58-monophosphate. J. Biol. Chem. 246:6183-6190, 1971.

    Google Scholar 

  54. Ogreid, D., and S. O. Doskeland. Cyclic nucleotides modulate the release of [3H] adenosine cyclic 3',5'-phosphate bound to the regulatory moiety of protein kinase I by the catalytic subunit of the kinase. Biochemistry 22:1686-1696, 1983.

    Google Scholar 

  55. Ogura, A., T. Iijima, T. Amano, and Y. Kudo. Optical monitoring of excitatory synaptic activity between cultured hippocampal neurons by a multisite Ca2+ fluorometry. Neurosci. Lett. 78:69-74, 1987.

    Google Scholar 

  56. Orchard, C. H., D. A. Eisner, and D. G. Allen. Oscillations of intracellular Ca2+ in mammalian cardiac muscle. Nature (London) 304:735-738, 1983.

    Google Scholar 

  57. Pugh, Jr., E. N. Transfected cyclic nucleotide-gated channels as biosensors. J. Gen. Physiol. 116:143-145, 2000.

    Google Scholar 

  58. Rapp, P. E., and M. J. Berridge. Oscillations in calciumcyclic AMP control loops form the basis of pacemaker activity and other high frequency biological rhythms. J. Theor. Biol. 66:497-525, 1977.

    Google Scholar 

  59. Reisert, J., and H. R. Matthews. Responses to prolonged odour stimulation in frog olfactory receptor cells. J. Physiol. 534:179-191, 2001.

    Google Scholar 

  60. Reisert, J., and H. R. Matthews. Simultaneous recording of receptor current and intraciliary Ca2+ concentration in salamander olfactory receptor cells. J. Physiol. 535:637-645, 2001.

    Google Scholar 

  61. Rich, T. C., K. A. Fagan, H. Nakata, J. Schaack, D. M. F. Cooper, and J. W. Karpen. Cyclic nucleotide-gated channels colocalize with adenylyl cyclase in regions of restricted cAMP diffusion. J. Gen. Physiol. 116:147-161, 2000.

    Google Scholar 

  62. Rich, T. C., K. A. Fagan, T. E. Tse, J. Schaack, D. M. F. Cooper, and J. W. Karpen. A uniform extracellular stimulus triggers distinct cAMP signals in different compartments of a simple cell. Proc. Natl. Acad. Sci. U.S.A. 98:13049-13054, 2001.

    Google Scholar 

  63. Rich, T. C., T. E. Tse, J. G. Rohan, J. Schaack, and J. W. Karpen. In vivo assessment of local phosphodiesterase activity using tailored cyclic nucleotide-gated channels as cAMP sensors. J. Gen. Physiol. 118:63-77, 2001.

    Google Scholar 

  64. Roos, W., C. Scheidegger, and G. Gerisch. Adenylate cyclase activity oscillations as signals for cell aggregation in Dictyostelium discoideum. Nature (London) 266:259-261, 1977.

    Google Scholar 

  65. Schwartz, J. H. The many dimensions of cAMP signaling. Proc. Natl. Acad. Sci. U.S.A. 98:13482-13484, 2001.

    Google Scholar 

  66. Smith, S. B., H. D. White, J. B. Siegel, and E. G. Krebs. Cyclic AMP-dependent protein kinase I: Cyclic nucleotide binding, structural changes, and release of the catalytic subunits. Proc. Natl. Acad. Sci. U.S.A. 78:1591-1595, 1981.

    Google Scholar 

  67. Steinberg, S. F., and L. L. Brunton. Compartmentation of G protein-coupled signaling pathways in cardiac myocytes. Annu. Rev. Pharmacol. Toxicol. 41:751-773, 2001.

    Google Scholar 

  68. Stojilkovic, S. S., and K. J. Catt. Calcium oscillations in anterior pituitary cells. Endocr. Rev. 13:256-280, 1992.

    Google Scholar 

  69. Sunahara, R. K., C. W. Dessauer, and A. G. Gilman. Complexity and diversity of mammalian adenylyl cyclases. Annu. Rev. Pharmacol. Toxicol. 36:461-480, 1996.

    Google Scholar 

  70. Sutherland, E. W. Studies on the mechanism of hormone action. Science 177:401-408, 1972.

    Google Scholar 

  71. Trivedi, B., and R. H. Kramer. Real-time patch-cram detection of intracellular cGMP reveals long-term suppression of responses to NO and muscarinic agonists. Neuron 21:895-906, 1998.

    Google Scholar 

  72. Tsien, R. Y., T. Pozzan, and T. J. Rink. T-cell mitogens cause early changes in cytoplasmic free Ca2+ and membrane potential in lymphocytes. Nature (London) 295:68-71, 1982.

    Google Scholar 

  73. Varnum, M. D., K. D. Black, and W. N. Zagotta. Molecular mechanism for ligand discrimination of cyclic nucleotidegated channels. Neuron 15:619-625, 1995.

    Google Scholar 

  74. Walsh, D. A., and S. M. Van Patten. Multiple pathway signal transduction by the cAMP-dependent protein kinase. FASEB J. 8:1227-1236, 1994.

    Google Scholar 

  75. Yau, K.-W. Phototransduction mechanism in retinal rods and cones: The Friedenwald lecture. Invest. Ophthalmol. Visual Sci. 35:9-32, 1994.

    Google Scholar 

  76. Zaccolo, M., F. De Giorgi, C. Y. Cho, L. Feng, T. Knapp, P. A. Negulescu, S. S. Taylor, R. Y. Tsien, and T. Pozzan. A genetically encoded, fluorescent indicator for cyclic AMP in living cells. Nat. Cell Biol. 2:25-29, 2000.

    Google Scholar 

  77. Zaccolo, M., and T. Pozzan. Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science 295:1711-1715, 2002.

    Google Scholar 

  78. Zhang, J., Y. Ma, S. S. Taylor, and R. Y. Tsien. Genetically encoded reporters of protein kinase A activity reveal impact of substrate tethering. Proc. Natl. Acad. Sci. U.S.A. 98:14997-15002, 2001.

    Google Scholar 

  79. Zong, X., H. Zucker, F. Hofmann, and M. Biel. Three amino acids in the C-linker are major determinants of gating in cyclic nucleotide-gated channels. EMBO J. 17:353-362, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rich, T.C., Karpen, J.W. Review Article: Cyclic AMP Sensors in Living Cells: What Signals Can They Actually Measure?. Annals of Biomedical Engineering 30, 1088–1099 (2002). https://doi.org/10.1114/1.1511242

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1511242

Navigation