Skip to main content

Advertisement

Log in

Numerical Simulation and Experimental Validation of Blood Flow in Arteries with Structured-Tree Outflow Conditions

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Blood flow in the large systemic arteries is modeled using one-dimensional equations derived from the axisymmetric Navier–Stokes equations for flow in compliant and tapering vessels. The arterial tree is truncated after the first few generations of large arteries with the remaining small arteries and arterioles providing outflow boundary conditions for the large arteries. By modeling the small arteries and arterioles as a structured tree, a semi-analytical approach based on a linearized version of the governing equations can be used to derive an expression for the root impedance of the structured tree in the frequency domain. In the time domain, this provides the proper outflow boundary condition. The structured tree is a binary asymmetric tree in which the radii of the daughter vessels are scaled linearly with the radius of the parent vessel. Blood flow and pressure in the large vessels are computed as functions of time and axial distance within each of the arteries. Comparison between the simulations and magnetic resonance measurements in the ascending aorta and nine peripheral locations in one individual shows excellent agreement between the two. © 2000 Biomedical Engineering Society.

PAC00: 8719Uv

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Anliker, M., R. L. Rockwell, and E. Ogden. Nonlinear analy-sis of flow pulses and shock waves in arteries. Z. Angew. Math. Phys. 22:217-246, 1971.

    Google Scholar 

  2. Atabek, H. B. Wave propagation through a viscous fluid contained in a tethered, initially stressed, orthotropic elastic tube. Biophys. J. 8:626-649, 1968.

    Google Scholar 

  3. Avolio, A. Aging and wave reflection. J. Hypertens. 10:S83-S86, 1992.

    Google Scholar 

  4. Barnard, A. C. L., W. A. Hunt, W. P. Timlake, and E. Varley. A theory of fluid flow in compliant tubes. Biophys. J. 6:717-724, 1966.

    Google Scholar 

  5. Bassingthwaighte, J. B., L. S. Liebovitch, and B. J. West. Fractal Physiology. The American Physiological Society Methods in Physiology Series. New York: Oxford University Press, 1994, pp. 236-262.

    Google Scholar 

  6. Caro, C. G., T. J. Pedley, R. C. Schroter, and W. A. Seed. The Mechanics of the Circulation. Oxford: Oxford University Press, 1978, pp. 151-433.

    Google Scholar 

  7. Chorin, A. J., and J. E. Marsden. A Mathematical Introduc-tion to Fluid Mechanics. 3rd ed. New York: Springer 1998, pp. 1-46.

    Google Scholar 

  8. Courant, R., K. Friedrichs, and H. Lewy. U ¨ ber die partiellen differenzengleichungen de mathematischen physic. Math. Ann. 100:32-74, 1928.

    Google Scholar 

  9. Feinberg, A. W., and H. Lax. Studies of the arterial pulse wave. Circulation 18:1125-1130, 1958.

    Google Scholar 

  10. Guyton, A. C. Textbook of Medical Physiology, 9th ed. Phila-delphia: W. B. Saunders Company, 1996, pp. 161-294.

    Google Scholar 

  11. Iberall, A. S.. Anatomy and steady flow characteristics of the arterial system with an introduction to its pulsatile character-istics. Math. Biosci. 1:375-385, 1967.

    Google Scholar 

  12. Janna, W. S. Introduction to Fluid Mechanics, 3rd ed. Bos-ton: PWS-Kent, 1993.

    Google Scholar 

  13. Kannel, W. B., P. A. Wolf, D. L. McGee, T. R. Dawber, P. McNamara, and W. P. Castelli. Systolic blood pressure, ar-terial rigidity, and risk of stroke. J. Am. Med. Assoc. 245:1225-1229, 1981.

    Google Scholar 

  14. Kassab, G. S., C. A. Rider, N. J. Tang, and Y. C. Fung. Morphometry of Pig Coronary Arterial Trees. Am. J. Physiol. 265:H350-H365, 1993.

    Google Scholar 

  15. Kozerke, S., R. Botnar, S. Oyre, M. B. Scheidegger, E. M. Pedersen, and P. Boesiger. Automatic vessel segmentation using active contours in cine phase contrast flow measure-ments. J. Magn. Reson. Imaging. 10:41-51, 1999.

    Google Scholar 

  16. Lax, H., A. Feinberg, and B. M. Cohen. The normal pulse wave and its modification in the presence of human athero-sclerosis. J. Chronic. Dis. 3:618-631, 1956.

    Google Scholar 

  17. Lighthill, J. Mathematical Biofluiddynamics. 3rd ed. Philadel-phia: Society for Industrial and Applied Mathematics, 1989, pp. 227-253.

    Google Scholar 

  18. Murray, C. D. The physiological principle of minimum work applied to the angle of branching of arteries. Am. J. Physiol. 9:835-841, 1926.

    Google Scholar 

  19. Nichols, W. W., and M. F. O'Rourke. McDonald's Blood Flow in Arteries, 4th ed. London: Edward Arnold, 1998, p. 564.

    Google Scholar 

  20. Olufsen, M. PhD thesis. Modeling the arterial system with reference to an anesthesia simulator. Roskilde: IMFUFA, Roskilde University, Denmark. Text No 345, 1998.

    Google Scholar 

  21. Olufsen, M. Structured tree outflow condition for blood flow in larger systemic arteries. Am. J. Physiol. 276:H257-H268, 1999.

    Google Scholar 

  22. Papageorgiou, G. L., B. N. Jones, V. J. Redding, and N. Hudson. The area ratio of normal arterial junctions and its implications in pulse wave reflections. Cardiovasc. Res. 24:478-484, 1990.

    Google Scholar 

  23. Pedersen, E. M., H.-W. Sung, A. C. Burlson, and A. P. Yoganathan. Two-dimensional velocity measurements in a pulsatile flow model of the abdominal aorta simulating dif-ferent hemodynamic conditions. J. Biomech. 26:1237-1247, 1993.

    Google Scholar 

  24. Pedley, T. J. The Fluid Mechanics of Large Blood Vessels. Cambridge: Cambridge University Press, 1980, pp. 1-159.

    Google Scholar 

  25. Peskin, C. S. Partial Differential Equations in Biology. New York: Courant Institute of Mathematical Sciences, New York University, 1976, pp. 160-208.

    Google Scholar 

  26. Pollanen, M. S. Dimensional optimization at different levels at the arterial hierarchy. J. Theor. Biol. 159:267-270, 1992.

    Google Scholar 

  27. Segers, P., F. Dubois, D. DeWachter, and P. Verdonck. Role and relevancy of a cardiovascular simulator. Cardiovasc. Eng. 3:48-56, 1998.

    Google Scholar 

  28. Stergiopulos, N., D. F. Young, and T. R. Rogge. Computer simulation of arterial flow with applications to arterial and aortic stenosis. J. Biomech. 25:1477-1488, 1992.

    Google Scholar 

  29. Tardy, Y., J. J. Meiseter, F. Perret, H. R. Brunner, and M. Arditi. Non-invasive estimate of the mechanical properties of peripheral arteries from ultrasonic and photoplethysmo-graphic measurements. Clin. Phys. Physiol. Meas. 12:39-54, 1991.

    Google Scholar 

  30. Uylings, H. B. M. Optimization of diameters and bifurcation angles in lung and vascular tree structures. Bull. Math. Biol. 39:509-520, 1977.

    Google Scholar 

  31. Westerhof, N., F. Bosman, C. J. DeVries, and A. Noorder-graaf. Analog studies of the human systemic arterial tree. J. Biomech. 2:121-143, 1969.

    Google Scholar 

  32. Womersley, J. R. An elastic tube theory of pulse transmission and oscillatory flow in mammalian arteries. Technical Report WADC TR:56-614, Wright Air Development Center ~WADC!, Air Research and Development Command, United States Air Force, Wright-Patterson Air Force Base, Ohio, 1957.

    Google Scholar 

  33. Young, D. F., and F. Y. Tsai. Flow characteristics in models of arterial stenosis-ii. unsteady flow. J. Biomech. 6:547-559, 1973.

    Google Scholar 

  34. Zamir, M. Nonsymmetrical bifurcations in arterial branching. J. Gen. Physiol. 72:837-845, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olufsen, M.S., Peskin, C.S., Kim, W.Y. et al. Numerical Simulation and Experimental Validation of Blood Flow in Arteries with Structured-Tree Outflow Conditions. Annals of Biomedical Engineering 28, 1281–1299 (2000). https://doi.org/10.1114/1.1326031

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1326031

Navigation