1.

Aoki, S., K. Aoki, S. Ohsawa, H. Nakajima, H. Kumagai, and T. Araki. Dynamic MR imaging of the carotid wall. *J. Magn. Reson. Imaging* 9:420–427, 1999.

2.

Augst, A. D., D. C. Barratt, A. D. Hughes, S. A. Thom, and X. Y. Xu. CFD model of a human carotid artery bifurcation reconstructed from 3D ultrasound data. Proceedings of the 5th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering, 2001 (unpublished).

3.

Bao, X., C. Lu, and J. A. Frangos. Temporal gradient in shear but not steady shear stress induces PDGF-A and MCP-1 expression in endothelial cells: Role of NO, NF kappa B, and egr-1. *Arterioscler., Thromb., Vasc. Biol.* 19:996–1003, 1999.

4.

Stroud, J. S., S. A. Berger, and D. Saloner. Numerical analysis of flow through a severely stenotic carotid artery bifurcation. *J. Biomech. Eng.* 124:9–20, 2002.

5.

Bergeron, P., R. Carrier, D. Roy, N. Blais, and J. Raymond. Radiation doses to patients in neurointerventional procedures. *AJNR Am. J. Neuroradiol.* 15:1809–1812, 1994.

6.

Botnar, R., G. Rappitsch, M. B. Scheidegger, D. Liepsch, K. Perktold, and P. Boesiger. Hemodynamics in the carotid artery bifurcation: A comparison between numerical simulations and *in vitro* MRI measurements. *J. Biomech.* 33:137–144, 2000.

7.

Caro, C. G., J. M. Fitz-Gerald, and R. C. Schroter. Atherosclerosis and arterial wall shear: Observations, correlation, and proposal of a shear-dependent mass transfer mechanism for atherogenesis. *Proc. R. Soc. London, Ser. B* 177:109, 1971.

8.

Caro, C. G., J. M. Fitz-Gerald, and R. C. Schroter. Proposal of a shear-dependent mass transfer mechanism for atherogenesis. *Clin. Sci.* 40:5P, 1971.

9.

Cebral, J. R., R. Lohner, and J. E. Burgess. Computer simulation of cerebral artery clipping: Relevance to aneurysm neurosurgery planning. Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering, 2000 (unpublished).

10.

Cebral, J. R., R. Lohner, P. L. Choyke, and P. J. Yim. Merging of intersecting triangulations for finite-element modeling. *J. Biomech.* 34:815–819, 2001.

11.

Cebral, J. R., R. Lohner, O. Soto, and P. J. Yim. On the modeling of carotid artery blood flow from magnetic resonance images. *ASME Bioeng. Conf.* 50:619–620, 2001.

12.

Cebral, J. R., P. J. Yim, R. Lohner, O. Soto, H. Marcos, and P. J. Choyke. New methods for computational fluid dynamics modeling of carotid artery from magnetic resonance angiography. *Proc. SPIE* 4321:177–187, 2001.

13.

Chandran, K. B., M. J. Vonesh, A. Roy, S. Greenfield, B. Kane, R. Greene, and D. D. McPherson. Computation of vascular flow dynamics from intravascular ultrasound images. *Med. Eng. Phys.* 18:295–304, 1996.

14.

Clingan, P. A., and M. H. Friedman. The effect of celiac and renal artery outflows on near-wall velocities in the porcine iliac arteries. *Ann. Biomed. Eng.* 28:302–308, 2000.

15.

Fahrig, R., A. J. Fox, S. Lownie, and D. W. Holdsworth. Use of a C-arm system to generate true three-dimensional computed rotational angiograms: Preliminary *in vitro* and *in vivo* results. *AJNR Am. J. Neuroradiol.* 18:1507–1514, 1997.

16.

Fenster, A., D. B. Downey, and H. N. Cardinal. Three-dimensional ultrasound imaging. *Phys. Med. Biol.* 46:R67–R99, 2001.

17.

Foutrakis, G. N., G. Burgreen, H. Yonas, and R. J. Sclabassi. Construction of 3D arterial volume meshes from magnetic resonance angiography. *Neurol. Res.* 18:354–360, 1996.

18.

Frayne, R., D. A. Steinman, C. R. Ethier, and B. K. Rutt. Accuracy of MR phase contrast velocity measurements for unsteady flow. *J. Magn. Reson. Imaging* 5:428–431, 1995.

19.

Friedman, M. H., C. B. Bargeron, O. J. Deters, G. M. Hutchins, and F. F. Mark. Correlation between wall shear and intimal thickness at a coronary artery branch. *Atherosclerosis (Berlin)* 68:27–33, 1987.

20.

Friedman, M. H., O. J. Deters, C. B. Bargeron, G. M. Hutchins, and F. F. Mark. Shear-dependent thickening of the human arterial intima. *Atherosclerosis (Berlin)* 60:161–171, 1986.

21.

Fry, D. L. Acute vascular endothelial changes associated with increased blood velocity gradients. *Circ. Res.* 22:165–197,1968.

22.

Gibson, C. M., L. Diaz, K. Kandarpa, F. M. Sacks, R. C. Pasternak, T. Sandor, C. Feldman, and P. H. Stone. Relation of vessel wall shear stress to atherosclerosis progression in human coronary arteries. *Arterioscler. Thromb.* 13:310–315,1993.

23.

Gill, J. D., H. M. Ladak, D. A. Steinman, and A. Fenster. Accuracy and variability assessment of a semiautomatic technique for segmentation of the carotid arteries from three-dimensional ultrasound images. *Med. Phys.* 27:1333–1342, 2000.

24.

Gnasso, A., C. Carallo, C. Irace, V. Spagnuolo, N. G. De, P. L. Mattioli, and A. Pujia. Association between intima-media thickness and wall shear stress in common carotid arteries in healthy male subjects. *Circulation* 94:3257–3262, 1996.

25.

Gnasso, A., C. Irace, C. Carallo, F. M. De, C. Motti, P. L. Mattioli, and A. Pujia. *In vivo* association between low wall shear stress and plaque in subjects with asymmetrical carotid atherosclerosis. *Stroke* 28:993–998, 1997.

26.

Goldman, D., and A. S. Popel. Computational modeling of oxygen transport from complex capillary networks. Relation to the microcirculation physiome. *Adv. Exp. Med. Biol.* 471:555–563, 1999.

27.

Goldman, D., and A. S. Popel. A computational study of the effect of capillary network anastomoses and tortuosity on oxygen transport. *J. Theor. Biol.* 206:181–194, 2000.

28.

Guadagni, G., F. Migliavacca, G. Dubini, and E. L. Bove. Simulations of surgical planning for fontan procedures. *Proc. ASME Bioeng. Conf.* 50:911–912, 2001.

29.

Holdsworth, D. W., C. J. Norley, R. Frayne, D. A. Steinman, and B. K. Rutt. Characterization of common carotid artery blood-flow wave forms in normal human subjects. *Physiol. Meas.* 20:219–240, 1999.

30.

Huang, H., R. Virmani, H. Younis, A. P. Burke, R. D. Kamm, and R. T. Lee. The impact of calcification on the biomechanical stability of atherosclerotic plaques. *Circulation* 103:1051–1056, 2001.

31.

Hyun, S., C. Kleinstreuer, and J. P. Archie, Jr. Computer simulation and geometric design of endarterectomized carotid artery bifurcations. *Crit. Rev. Biomed. Eng.* 28:53–59, 2000.

32.

Hyun, S., C. Kleinstreuer, and J. P. Archie, Jr. Hemodynamics analyses of arterial expansions with implications to thrombosis and restenosis. *Med. Eng. Phys.* 22:13–27, 2000.

33.

Hyun, S., C. Kleinstreuer, and J. P. Archie, Jr. Computational particle-hemodynamics analysis and geometric reconstruction after carotid endarterectomy. *Comput. Biol. Med.* 31:365–384, 2001.

34.

Ilegbusi, O. J., Z. Hu, R. Nesto, S. Waxman, D. Cyganski, J. Kilian, P. H. Stone, and C. L. Feldman. Determination of blood flow and endothelial shear stress in human coronary artery *in vivo*. *J. Invasive Cardiol.* 11:667–674, 1999.

35.

Jespersen, S. K., J. E. Wilhjelm, and H. Sillesen. Multiangle compound imaging. *Ultrason. Imaging* 20:81–102, 1998.

36.

Kaazempur-Mofrad, M. R., and C. R. Ethier. Mass transport in an anatomically realistic human right coronary artery. *Ann. Biomed. Eng.* 29:121–127, 2001.

37.

Karner, G., K. Perktold, M. Hofer, and D. Liepsch. Flow characteristics in an anatomically realistic compliant carotid artery bifurcation model. *Comput. Methods Biomech. Biomed. Eng.* 2:171–185, 1999.

38.

Kornet, L., A. P. Hoeks, J. Lambregts, and R. S. Reneman. In the femoral artery bifurcation, differences in mean wall shear stress within subjects are associated with different intima-media thicknesses. *Arterioscler., Thromb., Vasc. Biol.* 19:2933–2939, 1999.

39.

Kornet, L., J. Lambregts, A. P. Hoeks, and R. S. Reneman. Differences in near-wall shear rate in the carotid artery within subjects are associated with different intima-media thicknesses. *Arterioscler., Thromb., Vasc. Biol.* 18:1877–1884, 1998.

40.

Krams, R., J. J. Wentzel, J. A. Oomen, R. Vinke, J. C. Schuurbiers, P. J. de Feyter, P. W. Serruys, and C. J. Slager. Evaluation of endothelial shear stress and 3D geometry as factors determining the development of atherosclerosis and remodeling in human coronary arteries *in vivo*. Combining 3D reconstruction from angiography and IVUS (ANGUS) with computational fluid dynamics. *Arterioscler., Thromb., Vasc. Biol.* 17:2061–2065, 1997.

41.

Ku, D. N., D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. *Arteriosclerosis (Dallas)* 5:293–302, 1985.

42.

Ladak, H. M., J. S. Milner, and D. A. Steinman. Rapid three-dimensional segmentation of the carotid bifurcation from serial MR images. *J. Biomech. Eng.* 122:96–99, 2000.

43.

Ladak, H. M., J. B. Thomas, J. R. Mitchell, B. K. Rutt, and D. A. Steinman. A semiautomatic technique for measurement of arterial wall from black blood MRI. *Med. Phys.* 28:1098–1107, 2001.

44.

Lei, M., C. Kleinstreuer, and G. A. Truskey. A focal stress gradient-dependent mass transfer mechanism for atherogenesis in branching arteries. *Med. Eng. Phys.* 18:326–332, 1996.

45.

Liu, Y., Y. Lai, A. Nagaraj, B. Kane, A. Hamilton, R. Greene, D. D. McPherson, and K. B. Chandran. Pulsatile flow simulation in arterial vascular segments using intravascular ultrasound images. *Med. Eng. Phys*. 23:583–595, 2001.

46.

Long, Q., X. Y. Xu, B. Ariff, S. A. Thom, A. D. Hughes, and A. V. Stanton. Reconstruction of blood flow patterns in a human carotid bifurcation: A combined CFD and MRI study. *J. Magn. Reson. Imaging* 11:299–311, 2000.

47.

Long, Q., X. Y. Xu, M. Bourne, and T. M. Griffith. Numerical study of blood flow in an anatomically realistic aorto-iliac bifurcation generated from MRI data. *Magn. Reson. Med.* 43:565–576, 2000.

48.

Long, Q., X. Y. Xu, M. W. Collins, M. Bourne, and T. M. Griffith. Magnetic resonance image processing and structured grid generation of a human abdominal bifurcation. *Comput. Methods Programs Biomed.* 56:249–259, 1998.

49.

Long, Q., X. Y. Xu, M. W. Collins, T. M. Griffith, and M. Bourne. The combination of magnetic resonance angiography and computational fluid dynamics: A critical review. *Crit. Rev. Biomed. Eng.* 26:227–274, 1998.

50.

Malek, A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. *J. Am. Med. Assoc.* 282:2035–2042, 1999.

51.

Meairs, S., J. Rother, W. Neff, and M. Hennerici. New and future developments in cerebrovascular ultrasound, magnetic resonance angiography, and related techniques. *J. Clin. Ultrasound* 23:139–149, 1995.

52.

Milner, J. S., J. A. Moore, B. K. Rutt, and D. A. Steinman. Hemodynamics of human carotid artery bifurcations: Computational studies with models reconstructed from magnetic resonance imaging of normal subjects. *J. Vasc. Surg.* 28:143–156, 1998.

53.

Moore, J. A., B. K. Rutt, S. J. Karlik, K. Yin, and C. R. Ethier. Computational blood flow modeling based on *in vivo* measurements. *Ann. Biomed. Eng.* 27:627–640, 1999.

54.

Moore, J. A., D. A. Steinman, and C. R. Ethier. Computational blood flow modeling: Errors associated with reconstructing finite-element models from magnetic resonance images. *J. Biomech.* 31:179–184, 1998.

55.

Moore, J. A., D. A. Steinman, D. W. Holdsworth, and C. R. Ethier. Accuracy of computational hemodynamics in complex arterial geometries reconstructed from magnetic resonance imaging. *Ann. Biomed. Eng.* 27:32–41, 1999.

56.

Moore, J. A., D. A. Steinman, S. Prakash, K. W. Johnston, and C. R. Ethier. A numerical study of blood flow patterns in anatomically realistic and simplified end-to-side anastomoses. *J. Biomech. Eng.* 121:265–272, 1999.

57.

Myers, J. G., J. A. Moore, M. Ojha, K. W. Johnston, and C. R. Ethier. Factors influencing blood flow patterns in the human right coronary artery. *Ann. Biomed. Eng.* 29:109–120, 2001.

58.

Myers, J. G., M. Ojha, K. W. Johnston, and C. R. Ethier. Influence of branches, curvature, and caliber on blood flow patterns in the human right coronary artery. *Comput. Methods Biomech. Biomed. Eng*. (in press).

59.

Olufsen, M. S. Structured tree outflow condition for blood flow in larger systemic arteries. *Am. J. Physiol.* 276:H257–H268, 1999.

60.

Pedersen, E. M., S. Oyre, M. Agerbaek, I. B. Kristensen, S. Ringgaard, P. Boesiger, and W. P. Paaske. Distribution of early atherosclerotic lesions in the human abdominal aorta correlates with wall shear stresses measured *in vivo*. *Eur. J. Vasc. Endovasc. Surg.* 18:328–333, 1999.

61.

Perktold, K., and M. Hofer. Mathematical modeling of flow effects and transport processes in arterial bifurcation models. In The Haemodynamics of Arterial Organs—Comparison of Computational Predictions with *In vivo* and *In vitro* Data, edited by X. Y. Xu and M. W. Collins. Southampton, UK: WIT, 1999, pp. 43–84.

62.

Perktold, K., M. Hofer, G. Rappitsch, M. Loew, B. D. Kuban, and M. H. Friedman. Validated computation of physiologic flow in a realistic coronary artery branch. *J. Biomech.* 31:217–228, 1998.

63.

Perktold, K., A. Leuprecht, M. Prosi, T. Berk, M. Czerny, W. Trubel, and H. Schima. Fluid dynamics, wall mechanics, and oxygen transfer in peripheral bypass anastomoses: Computer studies on various designs. *Ann. Biomed. Eng*. (in press).

64.

Prakash, S., and C. R. Ethier. Enhanced error estimator for adaptive finite-element analysis of 3D incompressible flow. *Comput. Methods Appl. Mech. Eng*. 190:5413–5426, 2001.

65.

Prakash, S., and C. R. Ethier. Requirements for mesh resolution in 3D computational hemodynamics. *J. Biomech. Eng.* 123:134–144, 2001.

66.

Raghavan, M. L., D. A. Vorp, M. P. Federle, M. S. Makaroun, and M. W. Webster. Wall stress distribution on three-dimensionally reconstructed models of human abdominal aortic aneurysm. *J. Vasc. Surg.* 31:760–769, 2000.

67.

Rutt, B. K., D. W. Holdsworth, S. Naik, D. H. Lee, and A. J. Fox. Ultra-high-resolution three-dimensional carotid MRA: Validation of ceMRA and MOTSA with CRA. Proceedings of the International Society for Magnetic Resonance in Medicine 9th Scientific Meeting, 2001, p. 399.

68.

Shpilfoygel, S. D., R. A. Close, D. J. Valentino, and G. R. Duckwiler. X-ray videodensitometric methods for blood flow and velocity measurement: A critical review of literature. *Med. Phys.* 27:2008–2023, 2000.

69.

Steinman, D. A., C. R. Ethier, and B. K. Rutt. Combined analysis of spatial and velocity displacement artifacts in phase contrast measurements of complex flows. *J. Magn. Reson. Imaging* 7:339–346, 1997.

70.

Steinman, D. A., and B. K. Rutt. On the nature and reduction of plaque-mimicking flow artifacts in black blood MRI of the carotid bifurcation. *Magn. Reson. Med.* 39:635–641, 1998.

71.

Steinman, D. A., J. B. Thomas, H. M. Ladak, J. S. Milner, J. G. Merino, and J. D. Spence. Use of a patient-specific computational hemodynamic model to explain conflicting Doppler and B-mode ultrasound assessments of carotid stenosis. Proceedings of the 2nd World Congress on Medical Physics and Biomedical Engineering, 2000 (unpublished).

72.

Steinman, D. A., J. B. Thomas, H. M. Ladak, J. S. Milner, B. K. Rutt, and J. D. Spence. Reconstruction of carotid bifurcation hemodynamics and wall thickness using computational fluid dynamics and MRI. *Magn. Reson. Med*. 47:149–159, 2002.

73.

Tasciyan, T. A., R. Banerjee, Y. I. Cho, and R. Kim. Two-dimensional pulsatile hemodynamic analysis in the magnetic resonance angiography interpretation of a stenosed carotid arterial bifurcation. *Med. Phys.* 20:1059–1070, 1993.

74.

Taylor, C. A., M. T. Draney, J. P. Ku, D. Parker, B. N. Steele, K. Wang, and C. K. Zarins. Predictive medicine: Computational techniques in therapeutic decision making. *Comput. Aided Surg.* 4:231–247, 1999.

75.

Taylor, C. A., T. J. R. Hughes, and C. K. Zarins. Computational investigations in vascular disease. *Comput. Phys.* 10:224–232, 1996.

76.

Thomas, J. B., B. K. Rutt, H. M. Ladak, and D. A. Steinman. Effect of black blood MR image quality on vessel wall segmentation. *Magn. Reson. Med.* 46:299–304, 2001.

77.

Thompson, J. F., B. K. Soni, and N. P. Weatherill. Handbook of Grid Generation. Boca Raton, FL: CRC, 1998.

78.

Van Langenhove, G., J. J. Wentzel, R. Krams, C. J. Slager, J. N. Hamburger, and P. W. Serruys. Helical velocity patterns in a human coronary artery: A three-dimensional computational fluid dynamic reconstruction showing the relation with local wall thickness. *Circulation* 102:E22–E24, 2000.

79.

Vonesh, M. J., C. H. Cho, J. V. Pinto, B. J. Kane, D. S. Lee, S. I. Roth, K. B. Chandran, and D. D. McPherson. Regional vascular mechanical properties by 3D intravascular ultrasound with finite-element analysis. *Am. J. Physiol.* 272:H425–H437, 1997.

80.

Vorp, D. A., D. A. Steinman, and C. R. Ethier. Computational modeling of arterial biomechanics. *Comput. Sci. Eng.* 3:51–64, 2001.

81.

Wang, K. C., R. W. Dutton, and C. A. Taylor. Improving geometric model construction for blood flow modeling. *IEEE Eng. Med. Biol. Mag.* 18:33–39, 1999.

82.

Wentzel, J. J., J. Kloet, I. Andhyiswara, J. A. Oomen, J. C. Schuurbiers, B. de Smet, M. J. Post, D. de Kleijn, G. Pasterkamp, C. Borst, C. J. Slager, and R. Krams. Shear-stress and wall-stress regulation of vascular remodeling after balloon angioplasty: Effect of matrix metalloproteinase inhibition. *Circulation* 104:91–96, 2001.

83.

Wentzel, J. J., R. Krams, J. C. Schuurbiers, J. A. Oomen, J. Kloet, W. J. Der Giessen, P. W. Serruys, and C. J. Slager. Relationship between neointimal thickness and shear stress after Wallstent implantation in human coronary arteries. *Circulation* 103:1740–1745, 2001.

84.

Yim, P. J., J. R. Cebral, R. Mullick, and P. L. Choyke. Vessel surface reconstruction with a tubular deformable model. *IEEE Trans. Med. Imaging* 20:1411–1421, 2001.

85.

Zhao, S. Z., X. Y. Xu, B. Ariff, Q. Long, A. V. Stanton, A. D. Hughes, and S. A. Thom. Interindividual variations in wall shear stress and mechanical stress distributions at the carotid artery bifurcation of healthy humans. *J. Biomech.* (in press).

86.

Zhao, S. Z., X. Y. Xu, M. W. Collins, A. V. Stanton, A. D. Hughes, and S. A. Thom. Flow in carotid bifurcations: Effect of the superior thyroid artery. *Med. Eng. Phys.* 21:207–214, 1999.

87.

Zhao, S. Z., X. Y. Xu, A. D. Hughes, S. A. Thom, A. V. Stanton, B. Ariff, and Q. Long. Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation. *J. Biomech.* 33:975–984, 2000.