Skip to main content
Log in

A Spatially Explicit Nanomechanical Model of the Half-Sarcomere: Myofilament Compliance Affects Ca2+-Activation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The force exerted by skeletal muscle is modulated by compliance of tissues to which it is connected. Force of the muscle sarcomere is modulated by compliance of the myofilaments. We tested the hypothesis that myofilament compliance influences Ca2+ regulation of muscle by constructing a computational model of the muscle half sarcomere that includes compliance of the filaments as a variable. The biomechanical model consists of three half-filaments of myosin and 13 thin filaments. Initial spacing of motor domains of myosin on thick filaments and myosin-binding sites on thin filaments was taken to be that measured experimentally in unstrained filaments. Monte-Carlo simulations were used to determine transitions around a three-state cycle for each cross-bridge and between two-states for each thin filament regulatory unit. This multifilament model exhibited less “tuning” of maximum force than an earlier two-filament model. Significantly, both the apparent Ca2+-sensitivity and cooperativity of activation of steady-state isometric force were modulated by myofilament compliance. Activation-dependence of the kinetics of tension development was also modulated by filament compliance. Tuning in the full myofilament lattice appears to be more significant at submaximal levels of thin filament activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Adams, G. R., V. J. Caiozzo, and K. M. Baldwin. Skeletal muscle unweighting: Spaceflight and ground-based models. J. Appl. Physiol. 95:2185–2201, 2003.

    Google Scholar 

  2. Bagshaw, C. R. Muscle Contraction. London: Chapman & Hall, 1993.

    Google Scholar 

  3. Brandt, P. W., M. S. Diamond, and F. H. Schachat. The thin filament of vertebrate skeletal muscle co-operatively activates as a unit. J. Mol. Biol. 180:379–384, 1984.

    Google Scholar 

  4. Brenner, B. Effect of Ca2+ on cross-bridge turnover kinetics in skinned single rabbit psoas fibers: Implications for regulation of muscle contraction. Proc. Natl. Acad. Sci. U.S.A. 85:3265–3269, 1988.

    Google Scholar 

  5. Brenner, B., and E. Eisenberg. Rate of force generation in mus-cle: Correlation with actomyosin ATPase activity in solution. Proc. Natl. Acad. Sci. U.S.A. 83:3542–3546, 1986.

    Google Scholar 

  6. Bukatina, A. E., and F. Fuchs. Effect of phalloidin on the ATPase activity of striated muscle myofibrils. J. Muscle Res. Cell Motil. 15:29–36, 1994.

    Google Scholar 

  7. Bukatina, A. E., F. Fuchs, and P. W. Brandt. Thin filament ac-tivation by phalloidin in skinned cardiac muscle. J. Mol. Cell. Cardiol. 27:1311–1315, 1995.

    PubMed  Google Scholar 

  8. Campbell, K. Rate constant of muscle force redevelopment reflects cooperative activation as well as cross-bridge kinetics. Biophys. J. 72:254–262, 1997.

    Google Scholar 

  9. Chase, P. B., M. Macpherson, and T. L. Daniel. A spatially explicit, 3-D model of the muscle sarcomere. Biophys. J. 82:5a, 2002.

    Google Scholar 

  10. Chase, P. B., D. A. Martyn, and J. D. Hannon. Isometric force redevelopment of skinned muscle fibers from rabbit with and without Ca2+. Biophys. J. 67:1994–2001, 1994.

    Google Scholar 

  11. Daniel, T. L., A. C. Trimble, and P. B. Chase. Compliant re-alignment of binding sites in muscle: Transient behavior and mechanical tuning. Biophys. J. 74:1611–1621, 1998.

    Google Scholar 

  12. Daniel, T. L., and M. S. Tu. Animal movement, mechanical tuning and coupled systems. J. Exp. Biol. 202 Pt 23:3415–3421, 1999.

    Google Scholar 

  13. Farley, C. T., J. Glasheen, and T. A. McMahon. Running springs: Speed and animal size. J. Exp. Biol. 185:71–86, 1993.

    Google Scholar 

  14. Fatkin, D., and R. M. Graham. Molecular mechanisms of inherited cardiomyopathies. Physiol. Rev. 82:945–980, 2002.

    Google Scholar 

  15. Gafurov, B.,S. Fredricksen, A. Cai, B. Brenner, P.B. Chase, and J. M. Chalovich. The 14 mutant of troponin T enhances ATPase activity and alters the cooperative binding of S1-ADP to regulated actin. Biochemistry, In press.

  16. Gittes, F., B. Mickey, J. Nettleton, and J. Howard. Flexural rigid-ity of microtubules and actin filaments measured from thermal fluctuations in shape. J. Cell Biol. 120:923–934, 1993.

    Google Scholar 

  17. Gordon, A. M., E. Homsher, and M. Regnier. Regulation of contraction in striated muscle. Physiol. Rev. 80:853–924, 2000.

    PubMed  Google Scholar 

  18. Hancock, W. O., L. L. Huntsman, and A. M. Gordon. Models of calcium activation account for differences between skeletal and cardiac force redevelopment kinetics. J. Muscle Res. Cell Motil. 18:671–681, 1997.

    Google Scholar 

  19. Higuchi, H., T. Yanagida, and Y. E. Goldman. Compliance of thin filaments in skinned fibers of rabbit skeletal muscle. Bio-phys. J. 69:1000–1010, 1995.

    Google Scholar 

  20. Howard, J. Mechanics of Motor Proteins and the Cytoskeleton. Sunderland, MA: Sinaur Associates, 2001.

    Google Scholar 

  21. Huxley, H. E., A. Stewart, H. Sosa, and T. Irving. X-ray diffrac-tion measurements of the extensibility of actin and myosin filaments in contracting muscle. Biophys. J. 67:2411–2421, 1994.

    Google Scholar 

  22. Isambert, H., P. Venier, A. C. Maggs, A. Fattoum, R. Kassab, D. Pantaloni, and M.-F. Carlier. Flexibility of actin filaments derived from thermal fluctuations. Effect of bound nucleotide, phalloidin, and muscle regulatory proteins. J. Biol. Chem. 270:11437–11444, 1995.

    PubMed  Google Scholar 

  23. Köhler, J., Y. Chen, B. Brenner, A. M. Gordon, T. Kraft, D. A. Martyn, M. Regnier, A. J. Rivera, C.-K. Wang, and P. B. Chase. Familial hypertrophic cardiomyopathy mutations in troponin I (K183Δ, G203S, K206Q) enhance filament sliding. Physiol. Genomics 14:117–128, 2003.

    Google Scholar 

  24. Lambeth, M. J., and M. J. Kushmerick. A computational model for glycogenolysis in skeletal muscle. Ann. Biomed. Eng. 30:808–827, 2002.

    Google Scholar 

  25. Linari, M., I. Dobbie, M. Reconditi, N. Koubassova, M. Irving, G. Piazzesi, and V. Lombardi. The stiffness of skele-tal muscle in isometric contraction and rigor: The fraction of myosin heads bound to actin. Biophys. J. 74:2459–2473, 1998.

    Google Scholar 

  26. Luo, Y., R. Cooke, and E. Pate. A model of stress relaxation in cross-bridge systems: Effect of a series elastic element. Am. J. Physiol. 265:C279–C288, 1993.

    Google Scholar 

  27. Luo, Y., R. Cooke, and E. Pate. Effect of series elasticity on delay in development of tension relative to stiffness during muscle activation. Am.J.Physiol.267:C1598–C1606, 1994.

    Google Scholar 

  28. Martyn, D. A., and P. B. Chase. Faster force transient kinetics at submaximal Ca2+ activation of skinned psoas fibers from rabbit. Biophys. J. 68:235–242, 1995.

    Google Scholar 

  29. Martyn, D. A., P. B. Chase, M. Regnier, and A. M. Gordon. A simple model with myofilament compliance predicts activation dependent cross-bridge kinetics in skinned skeletal fibers. Biophys. J. 83:3425–3434, 2002.

    Google Scholar 

  30. McMahon, T. A., and P. R. Greene. The influence of track compliance on running. J. Biomech. 12:893–904, 1979.

    Google Scholar 

  31. Mijailovich, S. M., J. J. Fredberg, and J. P. Butler. On the theory of muscle contraction: Filament extensibility and the development of isometric force and stiffness. Biophys. J. 71:1475–1484, 1996.

    Google Scholar 

  32. Millman, B. M. The filament lattice of striated muscle. Physiol. Rev. 78:359–391, 1998.

    Google Scholar 

  33. Molloy, J. E., J. E. Burns, J. Kendrick-Jones, R. T. Tregear, and D. C. S. White. Movement and force produced by a single myosin head. Nature 378:209–212, 1995.

    Google Scholar 

  34. Molloy, J.E.,J.E. Burns, J.C. Sparrow, R.T. Tregear, J. Kendrick-Jones, and D. C. S. White. Single-molecule mechan-ics of heavy meromyosin and S1 interacting with rabbit or Drosophila actins using optical tweezers. Biophys. J. 68:298S–303S, S-5S, 1995.

    Google Scholar 

  35. Regnier, M., D. A. Martyn, and P. B. Chase. Calmidazolium alters Ca2+ regulation of tension redevelopment rate in skinned skeletal muscle. Biophys. J. 71:2786–2794, 1996.

    Google Scholar 

  36. Regnier, M., D. A. Martyn, and P. B. Chase. Calcium regulation of tension redevelopment kinetics with 2-deoxy-ATP or low [ATP] in rabbit skeletal muscle. Biophys. J. 74:2005–2015, 1998.

    Google Scholar 

  37. Regnier, M., A. J. Rivera, M. A. Bates, C.-K. Wang, P. B. Chase, and A. M. Gordon. Thin filament near-neighbor regulatory unit interactions affect rabbit skeletal muscle steady state force-Ca2+ relations. J. Physiol. 540:485–497, 2002.

    Google Scholar 

  38. Regnier, M., A. J. Rivera, P. B. Chase, L. B. Smillie, and M. M. Sorenson. Regulation of skeletal muscle tension redevelopment by troponin C constructs with different Ca2+ affinities. Biophys. J. 76:2664–2672, 1999.

    Google Scholar 

  39. Riley, D. A., J. L. Bain, J. L. Thompson, R. H. Fitts, J. J. Widrick, S. W. Trappe, T. A. Trappe, and D. L. Costill. Decreased thin filament density and length in human atrophic soleus muscle fibers after spaceflight. J. Appl. Physiol. 88:567–572, 2000.

    Google Scholar 

  40. Salem, J.E.,G.M. Saidel, W.C. Stanley,and M.E. Cabrera. Mechanistic model of myocardial energy metabolism under nor-mal and ischemic conditions. Ann. Biomed. Eng. 30:202–216, 2002.

    Google Scholar 

  41. Sweeney, H. L., and J. T. Stull. Alteration of cross-bridge ki-netics by myosin light chain phosphorylation in rabbit skeletal muscle: Implications for regulation of actin-myosin interaction. Proc. Natl. Acad. Sci. U.S.A. 87:414–418, 1990.

    Google Scholar 

  42. Veigel, C., M. L. Bartoo, D. C. S. White, J. C. Sparrow, and J. E. Molloy. The stiffness of rabbit skeletal actomyosin cross-bridges determined with an optical tweezers transducer. Biophys. J. 75:1424–1438, 1998.

    Google Scholar 

  43. Wakabayashi, K., Y. Sugimoto, H. Tanaka, Y. Ueno, Y. Takezawa, and Y. Amemiya. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction. Biophys. J. 67:2422–2435, 1994.

    Google Scholar 

  44. White, R. J., and M. Averner. Humans in space. Nature 409:1115–1118, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chase, P.B., Macpherson, J.M. & Daniel, T.L. A Spatially Explicit Nanomechanical Model of the Half-Sarcomere: Myofilament Compliance Affects Ca2+-Activation. Annals of Biomedical Engineering 32, 1559–1568 (2004). https://doi.org/10.1114/B:ABME.0000049039.89173.08

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/B:ABME.0000049039.89173.08

Navigation