Skip to main content
Log in

In vitro growth and maturation of mouse oocyte-granulosa cell complex from cryopreserved ovaries and achievement of pup birth

  • Review Article
  • Infertility Treatment
  • Published:
Reproductive Medicine and Biology

Abstract

Ovarian tissue banking is a feasible strategy for fertility preservation for young women after cancer treatments. Ovarian tissue, after thawing, is used for several options; orthotopic grafting (normal site), autologous heterotopic grafting and collection of ovarian follicles for culture. Recent reports of live birth encouraged clinicians and researchers to apply this technology to premature ovarian failure (POF) resulting from strong cancer therapy. Grafting, however, carries a risk of malignant cell recurrence. For safety, development of a culture method is necessary but optimum culturing conditions for less-developed follicles abundant in the ovary are not well known. In the present article, the current status of ovarian tissue cryopreservation, and in vitro oocyte growth and maturation from the preserved ovaries are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Steptoe PC, Edwards RG. Birth after the reimplantation of a human embryo. Lancet 1978; 2: 366.

    Article  PubMed  CAS  Google Scholar 

  2. Newton H. The cryopreservation of ovarian tissue as a strategy for preserving the fertility of cancer patients. Hum Reprod Update 1998; 3: 237–247.

    Article  Google Scholar 

  3. Oktay K, Sonmezer M. Ovarian tissue banking for cancer patients: fertility preservation, not just ovarian cryopreservation. Hum Reprod 2004; 19: 1924–1925.

    Article  Google Scholar 

  4. Kim SS. Fertility preservation in female cancer patients: current developments and future directions. Fertil Steril 2006; 85: 1–11.

    Article  PubMed  CAS  Google Scholar 

  5. Fabbri R. Cryopreservation of human oocytes and ovarian tissue. Cell Tissue Bank 2006; 7: 113–122.

    Article  PubMed  Google Scholar 

  6. Donnez J, Dolmans MM, Demylle D et al. Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet 2004; 364: 1405–1410.

    Article  PubMed  CAS  Google Scholar 

  7. Meirow D, Levron J, Eldar-Geva T et al. Pregnancy after transplantation of cryopreserved ovarian tissue in a patient with ovarian failure after chemotherapy. N Engl J Med 2005; 353: 318–321.

    Article  PubMed  CAS  Google Scholar 

  8. Oktay K, Buyuk E, Veeck L et al. Embryo development after heterotopic transplantation of cryopreserved ovarian tissue. Lancet 2004; 363: 837–840.

    Article  PubMed  Google Scholar 

  9. Newton H, Aubard Y, Rutherford A, Sharma V, Gosden R. Low temperature storage and grafting of human ovarian tissue. Hum Reprod 1996; 11: 1487–1491.

    PubMed  CAS  Google Scholar 

  10. Oktay K, Newton H, Gosden RG. Transplantation of cryopreserved human ovarian tissue results in follicle growth initiation in SCID mice. Fertil Steril 2000; 73: 599–603.

    Article  PubMed  CAS  Google Scholar 

  11. Snow M, Cox SL, Jenkin G, Trounson A, Shaw J. Generation of live young from xenografted mouse ovaries. Science 2002; 297: 2227.

    Article  PubMed  CAS  Google Scholar 

  12. Sato Y, Terada Y, Utsunomiya H et al. Immunohistochemical localization of steroidogenic enzymes in human follicle following xenotransplantation of the human ovarian cortex into NOD-SCID mice. Mol Reprod 2003; 65: 67–72.

    Article  CAS  Google Scholar 

  13. Begin I, Bhatia B, Baldassarre H, Dinnyes A, Keefer CL. Cryopreservation of goat oocytes and in-vivo derived 2 to 4-cell embryos using the cryoloop (CLV) and solid-surface vitrification (SSV) methods. Theriogenology 2003; 59: 1839–1850.

    Article  PubMed  Google Scholar 

  14. Abe Y, Hara K, Matsumoto H et al. Feasibility of a nylonmesh holder for vitrification of bovine germinal vesicle oocytes in subsequent production of viable blastocysts. Biol Reprod 2005; 72: 1416–1420.

    Article  PubMed  CAS  Google Scholar 

  15. Fujihira T, Kishida R, Fukui Y. Developmental capacity of vitrified immature porcine oocytes following ICSI: effects of cytochalasin B and cryoprotectants. Cryobiology 2004; 49: 286–290.

    Article  PubMed  CAS  Google Scholar 

  16. Fuchinoue K, Fukunaga N, Chiba S, Nakajo Y, Yagi A, Kyono K. Freezing of human immature oocytes using cryoloops with Taxol in the vitrification solution. J Assist Reprod Genet 2004; 21: 307–309.

    Article  PubMed  Google Scholar 

  17. Yoon TK, Kim TJ, Park SE et al. Live births after vitrification of oocytes in a stimulated in vitro fertilization-embryo transfer program. Fertil Steril 2003; 79: 1323–1326.

    Article  PubMed  Google Scholar 

  18. Katayama KP, Stehlik J, Kuwayama M, Kato O, Stehlik E. High survival rate of vitrified human oocytes results in clinical pregnancy. Fertil Steril 2003; 80: 223–224.

    Article  PubMed  Google Scholar 

  19. Sugimoto M, Maeda S, Manabe N, Miyamoto H. Development of infantile rat ovaries autotransplanted after cryopreservation by vitrification. Theriogenology 2000; 53: 1093–1103.

    Article  PubMed  CAS  Google Scholar 

  20. Kagabu S, Umezu M. Transplantation of cryopreserved mouse, Chinese hamster, rabbit, Japanese monkey and rat ovaries into rat recipients. Exp Anim 2000; 49: 17–21.

    Article  PubMed  CAS  Google Scholar 

  21. Gook DA, McCully BA, Edgar DH, McBain JC. Development of antral follicles in human cryopreserved ovarian tissue following xenografting. Hum Reprod 2001; 16: 417–422.

    Article  PubMed  CAS  Google Scholar 

  22. Gosden RG, Baird DT, Wade JC, Webb R. Restoration of fertility to oophorectomized sheep by ovarian autografts stored at −196 degrees C. Hum Reprod 1994; 9: 597–603.

    PubMed  CAS  Google Scholar 

  23. Salle B, Demirci B, Franck M, Rudigoz RC, Guerin JF, Lornage J. Normal pregnancies and live births after autograft of frozen-thawed hemi-ovaries into ewes. Fertil Steril 2002; 7: 403–408.

    Article  Google Scholar 

  24. Migishima F, Suzuki-Migishima R, Song SY et al. Successful cryopreservation of mouse ovaries by vitrification. Biol Reprod 2003; 68: 881–887.

    Article  PubMed  CAS  Google Scholar 

  25. Cha KY, Han SY, Chung HM et al. Pregnancies and deliveries after in vitro maturation culture followed by in vitro fertilization and embryo transfer without stimulation in women with polycystic ovary syndrome. Fertil Steril 2000; 73: 978–983.

    Article  PubMed  CAS  Google Scholar 

  26. Child TJ, Phillips SJ, Abdul-Jalil AK, Gulekli B, Tan SL. A comparison of in vitro maturation and in vitro fertilization for women with polycystic ovaries. Obstet Gynecol 2002; 100: 665–670.

    Article  PubMed  Google Scholar 

  27. Chian RC, Buckett WM, Abdul Jalil AK et al. Natural-cycle in vitro fertilization combined with in vitro maturation of immature oocytes is a potential approach in infertility treatment. Fertil Steril 2004; 82: 1675–1678.

    Article  PubMed  Google Scholar 

  28. Le Du A, Kadoch IJ, Bourcigaux N et al. In vitro oocyte maturation for the treatment of infertility associated with polycystic ovarian syndrome: the French experience. Hum Reprod 2005; 20: 420–424.

    PubMed  Google Scholar 

  29. Spears N, Boland NI, Murray AA, Gosden RG. Mouse oocytes derived from in vitro grown primary ovarian follicles are fertile. Hum Reprod 1994; 9: 527–532.

    PubMed  CAS  Google Scholar 

  30. Cortvrindt R, Smitz J, Van Steirteghem AC. In-vitro maturation, fertilization and embryo development of immature oocytes from early preantral follicles from prepuberal mice in a simplified culture system. Hum Reprod 1996; 11: 2656–2666.

    PubMed  CAS  Google Scholar 

  31. Eppig JJ, Schroeder AC. Capacity of mouse oocytes from preantral follicles to undergo embryogenesis and development to live young after growth, maturation, and fertilization in vitro. Biol Reprod 1989; 4: 268–276.

    Article  Google Scholar 

  32. Hasegawa A, Hamada Y, Mehandjiev T, Koyama K. In-vitro growth and maturation as well as fertilization of mouse preantral oocytes from vitrified ovaries. Fertil Steril 2004; 81: 824–830.

    Article  PubMed  Google Scholar 

  33. Eppig JJ, O’Brien MJ. Development in vitro of mouse oocytes from primordial follicles. Biol Reprod 1996; 54: 197–207.

    Article  PubMed  CAS  Google Scholar 

  34. Yamamoto K, Otoi T, Koyama N, Horikita N, Tachikawa S, Miyano T. Development to live young from bovine small oocytes after growth, maturation and fertilization in vitro. Theriogenology 1999; 52: 81–89.

    Article  PubMed  CAS  Google Scholar 

  35. Brown BW, Radziewic T. Production of sheep embryos in vitro and development of progeny following single and twin embryo transfers. Theriogenology 1998; 49: 1525–1536.

    Article  PubMed  CAS  Google Scholar 

  36. Hirao Y, Itoh T, Shimizu M et al. In vitro growth and development of bovine oocyte-granulosa cell complexes on the flat substratum: effects of high polyvinylpyrrolidone concentration in culture medium. Biol Reprod 2004; 70: 83–91.

    Article  PubMed  CAS  Google Scholar 

  37. Kaneko H, Kikuchi K, Noguchi J, Hosoe M, Akita T. Maturation and fertilization of porcine oocytes from primordial follicles by a combination of xenografting and in vitro culture. Biol Reprod 2003; 69: 1488–1493.

    Article  PubMed  CAS  Google Scholar 

  38. Segino M, Ikeda M, Aoki S, Tokieda Y, Hirahara F, Sato K. In vitro culture of mouse GV oocytes and preantral follicles isolated from ovarian tissues cryopreserved by vitrification. Hum Cell 2003; 16: 109–116.

    Article  PubMed  Google Scholar 

  39. Cecconi S, Capacchietti G, Russo V, Berardinelli P, Mattioli M, Barboni B. In vitro growth of preantral follicles isolated from cryopreserved ovine ovarian tissue. Biol Reprod 2004; 70: 12–17.

    Article  PubMed  CAS  Google Scholar 

  40. Newton H, Illingworth P. In vitro growth of murine preantral follicles after isolation from cryopreserved ovarian tissue. Hum Reprod 2001; 16: 423–429.

    Article  PubMed  CAS  Google Scholar 

  41. dela Pena EC, Takahashi Y, Katagiri S, Atabay EC, Nagano M. Birth of pups after transfer of mouse embryos derived from vitrified preantral follicles. Reproduction 2002; 123: 593–600.

    Article  CAS  Google Scholar 

  42. Hasegawa A, Mochida N, Ogasawara T, Koyama K. Pup birth from mouse oocytes in preantral follicles derived from vitrified and warmed ovaries followed by in vitro growth, in vitro maturation, and in vitro fertilization. Fertil Steril 2006; 86: 1182–1192.

    Article  PubMed  Google Scholar 

  43. Abir R, Franks S, Mobberley MA, Moore PA, Margara RA, Winston RM. Mechanical isolation and in vitro growth of preantral and small antral human follicles. Fertil Steril 1997; 68: 682–688.

    Article  PubMed  CAS  Google Scholar 

  44. Liu J, Van der Elst J, Van den Broecke R, Dhont M. Live offspring by in vitro fertilization of oocytes from cryopreserved primordial mouse follicles after sequential in-vivo transplantation and in vitro maturation. Biol Reprod 2001; 64: 171–178.

    Article  PubMed  CAS  Google Scholar 

  45. Hovatta O, Wright C, Krausz T, Hardy K, Winston RM. Human primordial, primary and secondary ovarian follicles in long-term culture: effect of partial isolation. Hum Reprod 1999; 14: 2519–2524.

    Article  PubMed  CAS  Google Scholar 

  46. Louhio H, Hovatta O, Sjoberg J, Tuuri T. The effects of insulin, and insulin-like growth factors I and II on human ovarian follicles in long-term culture. Mol Hum Reprod 2000; 6: 694–698.

    Article  PubMed  CAS  Google Scholar 

  47. Rahimi G, Isachenko E, Sauer H et al. Measurement of apoptosis in long-term cultures of human ovarian tissue. Reproduction 2001; 122: 657–663.

    Article  PubMed  CAS  Google Scholar 

  48. Hreinsson JG, Scott JE, Rasmussen C, Swahn ML, Hsueh AJ, Hovatta O. Growth differentiation factor-9 promotes the growth, development, and survival of human ovarian follicles in organ culture. J Clin Endocrinol Metab 2002; 87: 316–321.

    Article  PubMed  CAS  Google Scholar 

  49. Eppig JJ. Oocyte control of ovarian follicular development and function in mammals. Reproduction 2001; 122: 829–838.

    Article  PubMed  CAS  Google Scholar 

  50. Epifano O, Dean J. Genetic control of early folliculogenesis in mice. Trends Endocrinol Metab 2002; 13: 169–173.

    Article  PubMed  CAS  Google Scholar 

  51. Choi Y, Rajkovic A. Genetics of early mammalian folliculogenesis. Cell Mol Life Sci 2006; 63: 579–590.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akiko Hasegawa.

About this article

Cite this article

Hasegawa, A., Koyama, K. In vitro growth and maturation of mouse oocyte-granulosa cell complex from cryopreserved ovaries and achievement of pup birth. Reprod Med Biol 6, 77–83 (2007). https://doi.org/10.1111/j.1447-0578.2007.00169.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1447-0578.2007.00169.x

Key words

Navigation