Skip to main content
Log in

Multiple testing with close to equally correlated structure

  • Published:
Journal of Statistical Theory and Practice Aims and scope Submit manuscript

Abstract

In clinical trials with multiple primary endpoints or with multiple observations on the same sampling unit, the maximum of all observations is a convenient statistic that controls the familywise error rate. The quantile of this statistic depends on the correlation among multiple observations. To simplify modeling, the compound symmetry (CS) covariance structure is frequently used. The assumption of exact compound symmetry cannot usually be justified, and further sensitivity studies under more varied correlations are recommended. The need for multiple simulations may impose an increased demand on computer and time resources. To evaluate the sensitivity of simulation results restricted to CS structure, we calculated the linear part of the Taylor expansion of the cumulative distribution function (CDF) for the maximum statistic. Furthermore, we derived the Taylor expansion for quantiles of the maximum statistic. Our simulation studies on the linear approximation of quantiles confirmed good performance of the linearization formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Armitage, P., and M. Parmar. 1986. Some approaches to the problem of multiplicity in clinical trials. Proceedings of the Thirteenth International Biometric Conference, Biometric Society, Seattle, WA, 1–15, July 27-August 1.

  • Berman, S. M. 1964. Limit theorems for the maximum term in stationary sequences. Annals of Mathematical Statistics 35:502–16. doi:10.1214/aoms/1177703551.

    Article  MathSciNet  Google Scholar 

  • Dubey, S. D. 1985. Adjustment of p-values for multiplicities of intercorrelating symptoms. Proceedings of the Sixth International Society for Clinical Biostatistics, Düsseldorf, Germany, September 15–20.

  • Efron, B. 1997. The length heuristic for simultaneous hypothesis tests. Biometrika 84:143–57. doi:10.1093/biomet/84.1.143.

    Article  MathSciNet  Google Scholar 

  • Gupta, S. S. 1963. Probability integrals of multivariate normal and multivariate t 1. Annals of Mathematical Statistics 34:792–828. doi:10.1214/aoms/1177704004.

    Article  MathSciNet  Google Scholar 

  • Gupta, S. S., K. Nagel, and S. Panchapakesan. 1973. On the order statistics from equally correlated normal random variables. Biometrika 60:403–13. doi:10.1093/biomet/60.2.403.

    Article  MathSciNet  Google Scholar 

  • Gupta, S. S., S. Panchapakesan, and J. K. Sohn. 1983. On the distribution of the studentized maximum of equally correlated normal random variables. Technical Report 83–31. West Lafayette, IN: Purdue University.

    MATH  Google Scholar 

  • James, S. 1991. Approximate multinormal probabilities applied to correlated multiple endpoints in clinical trials. Statistics in Medicine 10:1123–35. doi:10.1002/(ISSN)1097-0258.

    Article  Google Scholar 

  • Julious, S. A., and N. E. McIntyre. 2012. Sample sizes for trials involving multiple correlated must-win comparisons. Pharmaceutical Statistics 11:177–85. doi:10.1002/pst.515.

    Article  Google Scholar 

  • Jung, S. H., H. Bang, and S. Young. 2005. Sample size calculation for multiple testing in microarray data analysis. Biostatistics 6:157–69. doi:10.1093/biostatistics/kxh026.

    Article  Google Scholar 

  • Littell, R. C., J. Pendergast, and R. Natarajan. 2000. Modelling covariance structure in the analysis of repeated measures data. Statistics in Medicine 19:1793–819. doi:10.1002/(ISSN)1097-0258.

    Article  Google Scholar 

  • Pocock, S. J., N. L. Geller, and A. A. Tsiatis. 1987. The analysis of multiple endpoints in clinical trials. Biometrics 43:487–98. doi:10.2307/2531989.

    Article  MathSciNet  Google Scholar 

  • Romano, J. P., and M. Wolf. 2005. Exact and approximate stepdown methods for multiple hypothesis testing. Journal of the American Statistical Association—Theory and Methods 469:94–108. doi:10.1198/016214504000000539.

    Article  MathSciNet  Google Scholar 

  • Shi, Q., E. S. Pavey, and R. E. Carter. 2012. Bonferroni-based correction factor for multiple, correlated endpoints. Pharmaceutical Statistics 11:300–09. doi:10.1002/pst.v11.4.

    Article  Google Scholar 

  • Steck, G. P., and D. B. Owen. 1962. A note on the equicorrelated multivariate normal distribution. Biometrika 49:269–71. doi:10.1093/biomet/49.1-2.269.

    Article  MathSciNet  Google Scholar 

  • Tong, Y. L. 1990. The multivariate normal distributions. New York, NY: Springer-Verlag.

    Book  Google Scholar 

  • Westfall, P. H., and S. S. Young. 1993. Resampling-based multiple testing: Examples and methods for P-value adjustment. New York, NY: John Wiley & Sons.

    MATH  Google Scholar 

  • Zaslavsky, B. G., and F. Chen. 2016. Multiplicity adjustment in clinical trials with multiple correlated testing. Model Assisted Statistics and Applications 11:315–24. doi:10.3233/MAS-160375.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris G. Zaslavsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaslavsky, B.G. Multiple testing with close to equally correlated structure. J Stat Theory Pract 12, 423–435 (2018). https://doi.org/10.1080/15598608.2017.1408508

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1080/15598608.2017.1408508

Keywords

AMS Subject Classification

Navigation