Skip to main content
Log in

Full conglomerability

  • Published:
Journal of Statistical Theory and Practice Aims and scope Submit manuscript

Abstract

We do a thorough mathematical study of the notion of full conglomerability, that is, conglomerability with respect to all the partitions of an infinite possibility space, in the sense considered by Peter Walley. We consider both the cases of precise and imprecise probability (sets of probabilities). We establish relations between conglomerability and countable additivity, continuity, super-additivity, and marginal extension. Moreover, we discuss the special case where a model is conglomerable with respect to a subset of all the partitions, and try to sort out the different notions of conglomerability present in the literature. We conclude that countable additivity, which is routinely used to impose full conglomerability in the precise case, appears to be the most well-behaved way to do so in the imprecise case as well by taking envelopes of countably additive probabilities. Moreover, we characterize these envelopes by means of a number of necessary and sufficient conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Armstrong, T. 1990. Conglomerability of probability measures on Boolean algebras. Journal of Mathematical Analysis and Applications 150:335–58.

    Article  MathSciNet  Google Scholar 

  • Armstrong, T., and K. Prikry. 1982. The semi-metric on a Boolean algebra induced by a finitely additive probability measure. Pacific Journal of Mathematics 99:249–64.

    Article  MathSciNet  Google Scholar 

  • Augustin, T., F. Coolen, G. de Cooman, and M. Troffaes, eds. 2014. Introduction to imprecise Probabilities. Hoboken, NJ: Wiley.

    MATH  Google Scholar 

  • Berti, P., and P. Rigo. 1992. Weak disintegrability as a form of preservation of coherence. Journal of the Italian Statistical Society 1 (2):161–82.

    Article  Google Scholar 

  • Berti, P., E. Regazzini, and P. Rigo. 1991. Coherent statistical inference and Bayes theorem. The Annals of Statistics 19 (1):366–81.

    Article  MathSciNet  Google Scholar 

  • Bogachev, V. 2007. Measure Theory. Berlin-Heidelberg: Springer.

    Book  Google Scholar 

  • Cantelli, F. P. 1935. Sulla estensione del principio delle probabilità totali ad una successioni illimitata di eventi incompatibili. Gior. Ist. It. Attuari 6 (4):415–27.

    MATH  Google Scholar 

  • de Finetti, B. 1930. Sulla proprietà conglomerativa delle probabilità subordinate. Rendiconti del Reale Instituto Lombardo 63:414–18.

    MATH  Google Scholar 

  • de Finetti, B. 1970. Teoria delle probabilità. Turin, Italy: Einaudi.

    MATH  Google Scholar 

  • de Finetti, B. 1972. Probability, induction and statistics. London, UK: Wiley.

    MATH  Google Scholar 

  • de Finetti, B. 1974–1975. Theory of probability: A critical introductory treatment. Chichester, UK: John Wiley & Sons. English translation of de Finetti (1970), two volumes.

    MATH  Google Scholar 

  • Denneberg, D. 1994. Non-additive measure and integral. Dordrecht, The Netherlands: Kluwer Academic.

    Book  Google Scholar 

  • Doria, S. 2011. Coherent upper and lower conditional previsions defined by Hausdorff outer and inner measures. In Modeling, design and simulation of systems with uncertainties, ed. A. Rauth and E. Auer, 175–95. Berlin-Heidelberg: Springer.

    Chapter  Google Scholar 

  • Doria, S. 2015. Symmetric coherent upper conditional prevision defined by the Choquet integral with respect to Hausdorff outer measure. Annals of Operations Research 229 (1):377–96.

    Article  MathSciNet  Google Scholar 

  • Dubins, L. E. 1974. On Lebesgue-like extensions of finitely additive measures. Annals of Probability 2:456–63.

    Article  MathSciNet  Google Scholar 

  • Dubins, L. E. 1975. Finitely additive conditional probabilities, conglomerability and disintegrations. Annals of Probability 3:88–99.

    MathSciNet  MATH  Google Scholar 

  • Joshi, K. D. 1983. Introduction to general topology. New Delhi: New Age International.

    MATH  Google Scholar 

  • Kadane, J. B., M. J. Schervisch, and T. Seidenfeld. 1986. Statistical implications of finitely additive probability. In Bayesian inference and decision techniques, ed. P. K. Goel and A. Zellner, 59–76. New York: Elsevier Science. Reprinted in Seidenfeld et al. (1999, Chapter 2.5).

    Google Scholar 

  • Krätschmer, V. 2003. When fuzzy measures are upper envelopes of probability measures. Fuzzy Sets and Systems 138:455–68.

    Article  MathSciNet  Google Scholar 

  • Miranda, E., and M. Zaffalon. 2010. Notes on desirability and conditional lower previsions. Annals of Mathematics and Artificial Intelligence 60 (3–4):251–309.

    Article  MathSciNet  Google Scholar 

  • Miranda, E., and M. Zaffalon. 2013. Conglomerable coherence. International Journal of Approximate Reasoning 54 (9):1322–50.

    Article  MathSciNet  Google Scholar 

  • Miranda, E., and M. Zaffalon. 2015. On the problem of computing the conglomerable natual extension. International Journal of Approximate Reasoning 56:1–27.

    Article  MathSciNet  Google Scholar 

  • Miranda, E., M. Zaffalon, and G. de Cooman. 2012. Conglomerable natural extension. International Journal of Approximate Reasoning 53 (8):1200–27.

    Article  MathSciNet  Google Scholar 

  • Moral, S. 2005. Epistemic irrelevance on sets of desirable gambles. Annals of Mathematics and Artificial Intelligence 45:197–214.

    Article  MathSciNet  Google Scholar 

  • Petturiti, D., and B. Vantaggi. 2017. Envelopes of conditional probabilities extending a strategy and a prior probability. International Journal of Approximate Reasoning 81:160–82.

    Article  MathSciNet  Google Scholar 

  • Schervisch, M. J., T. Seidenfeld, and J. B. Kadane. 1984. The extent of non-conglomerability of finitely additive probabilities. Zeitschrift fur Wahrscheinlichkeitstheorie und verwandte Gebiete 66:205–26.

    Article  MathSciNet  Google Scholar 

  • Schervisch, M. J., T. Seidenfeld, and J. B. Kadane. 2014. On the equivalence between conglomerability and disintegrability for unbounded random variables. Statistical Methods and Applications. Journal of the Italian Statistical Society 23 (4):501–18.

    Article  MathSciNet  Google Scholar 

  • Seidenfeld, T., M. J. Schervish, and J. B. Kadane. 1998. Non-conglomerability for finite-valued finitely additive probability. Sankhya 60 (3):476–91.

    MathSciNet  MATH  Google Scholar 

  • Seidenfeld, T., M. J. Schervish, and J. B. Kadane. 1999. Rethinking the foundations of statistics. Cambridge, UK: Cambridge University Press.

    MATH  Google Scholar 

  • Seidenfeld, T., M. J. Schervish, and J. B. Kadane. 2013. Two theories of conditional probability and non-conglomerability. In ISIPTA ‘13: Proceedings of the Eighth International Symposium on Imprecise Probability: Theories and Applications, ed. F. Cozman, T. Denœux, S. Destercke, and T. Seidenfeld, 295–302. NJ: Compiègne, France: SIPTA.

    Google Scholar 

  • Troffaes, M., and G. de Cooman. 2014. Lower previsions. Hoboken, UK: Wiley. 2014.

    Book  Google Scholar 

  • Ulam, S. 1930. Zur masstheorie in der allgemeinen mengenlehre. Fundamenta Mathematicae 16:140–50.

    Article  Google Scholar 

  • Walley, P. 1981. Coherent lower (and upper) probabilities. Statistics Research Report 22, University of Warwick, Coventry, UK.

  • Walley, P. 1991. Statistical reasoning with imprecise probabilities. London, UK: Chapman and Hall.

    Book  Google Scholar 

  • Williams, P. M. 1975. Notes on conditional previsions. Technical report, School of Mathematical and Physical Science, University of Sussex, Brighton, UK. Reprinted as Williams (2007).

  • Williams, P. M. 2007. Notes on conditional previsions. International Journal of Approximate Reasoning 44:366–83. Revised journal version of Williams (1975).

    Article  MathSciNet  Google Scholar 

  • Zaffalon, M., and E. Miranda. 2013. Probability and time. Artificial Intelligence 198 (1):1–51.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Zaffalon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miranda, E., Zaffalon, M. Full conglomerability. J Stat Theory Pract 11, 634–669 (2017). https://doi.org/10.1080/15598608.2017.1295890

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1080/15598608.2017.1295890

Keywords

AMS Subject Classification

Navigation