Skip to main content
Log in

Assessing natural direct and indirect effects for a continuous exposure and a dichotomous outcome

  • Article
  • Published:
Journal of Statistical Theory and Practice Aims and scope Submit manuscript

Abstract

Recent advances in the literature on mediation have extended from a traditional linear structural equation modeling approach to causal mediation analysis using potential outcomes framework. Pearl proposed a mediation formula to calculate expected potential outcomes used in the natural direct and indirect effects definition under the key sequential ignorability assumptions. Current methods mainly focused on binary exposure variables, and in this article, this approach is further extended to settings in which continuous exposures may be of interest. Focusing on a dichotomous outcome, we give precise definitions of the natural direct and indirect effects on both the risk difference and odds ratio scales utilizing the empirical joint distribution of the exposure and baseline covariates from the whole sample analysis population. A mediation-formula-based approach is proposed to estimate the corresponding causal quantities. Simulation study is conducted to assess the statistical properties of the proposed method, and we illustrate our approach by applying it to the Jackson Heart Study to estimate the mediation effects of diabetes on the relation between obesity and chronic kidney disease. Sensitivity analysis is performed to assess the impact of violation of no unmeasured mediator-outcome confounder assumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albert, J. M. 2008. Mediation analysis via potential outcomes models. Statistics in Medicine 27:1282–304. doi:10.1002/(ISSN)1097-0258.

    Article  MathSciNet  Google Scholar 

  • Albert, J. M., and S. Nelson. 2011. Generalized causal mediation analysis. Biometrics 67:1028–38. doi:10.1111/biom.2011.67.issue-3.

    Article  MathSciNet  Google Scholar 

  • Albert, J. M., and W. Wang. 2015. Sensitivity analyses for parametric causal mediation effect estimation. Biostatistics 16:339–51. doi:10.1093/biostatistics/kxu048.

    Article  MathSciNet  Google Scholar 

  • Baron, R. M., and D. A. Kenny. 1986. The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology 51:1173–82. doi:10.1037/0022-3514.51.6.1173.

    Article  Google Scholar 

  • Efron, B., and R. Tibshirani. 1993. An introduction to the bootstrap. New York, NY: Chapman and Hall.

    Book  Google Scholar 

  • Eknoyan, G. 2007. Obesity, diabetes, and chronic kidney disease. Current Diabetes Reports 7:449–53. doi:10.1007/s11892-007-0076-5.

    Article  Google Scholar 

  • Goetgeluk, S., S. Vansteelandt, and E. Goetghebeur. 2008. Estimation of controlled direct effects. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 70:1049–66. doi:10.1111/rssb.2008.70.issue-5.

    Article  MathSciNet  Google Scholar 

  • Imai, K., L. Keele, and D. Tingley. 2010. A general approach to causal mediation analysis. Psychological Methods 15:309–34. doi:10.1037/a0020761.

    Article  Google Scholar 

  • Imai, K., L. Keele, and T. Yamamoto. 2010. Identification, inference and sensitivity analysis for causal mediation effects. Statistical Science 25:51–71. doi:10.1214/10-STS321.

    Article  MathSciNet  Google Scholar 

  • Judd, K. 1998. Numerical methods in economics. Cambridge, MA: MIT Press.

    MATH  Google Scholar 

  • Lee, K., M. J. Daniels, and Y. Joo. 2013. Flexible marginalized models for bivariate longitudinal ordinal data. Biostatistics 14:462–76. doi:10.1093/biostatistics/kxs058.

    Article  Google Scholar 

  • Lee, K., Y. Joo, J. K. Yoo, and J. Lee. 2009. Marginalized random effects models for multivariate longitudinal binary data. Statistics in Medicine 28:1284–300.

    Article  MathSciNet  Google Scholar 

  • Lu, Y., K. Hajifathalian, M. Ezzati, M. Woodward, E. B. Rimm, and G. Danaei. 2014. Metabolic mediators of the effects of body-mass index, overweight, and obesity on coronary heart disease and stroke: A pooled analysis of 97 prospective cohorts with 1.8 million participants. Lancet 383:970–83.

    Article  Google Scholar 

  • MacKinnon, D. P., C. M. Lockwood, C. H. Brown, W. Wang, and J. M. Hoffman. 2007. The intermediate endpoint effect in logistic and probit regression. Clinical Trials 4:499–513.

    Article  Google Scholar 

  • Maric-Bilkan, C. 2013. Obesity and diabetic kidney disease. Medical Clinics of Northern America 97:59–74.

    Article  Google Scholar 

  • Pearl, J., 2001. Direct and indirect effects. Proceedings of the Seventeenth Conference on Uncertainty and Artificial Intelligence, 411–20. San Francisco, CA: Morgan Kaufmann.

    Google Scholar 

  • Pearl, J. 2012. The causal mediation formula—A guide to the assessment of pathways and mechanisms. Prevention Science 13:426–36.

    Article  Google Scholar 

  • Petersen, M. L., S. E. Sinisi, and M. J. Van Der Laan. 2006. Estimation of direct causal effects. Epidemiology 17:276–84.

    Article  Google Scholar 

  • Robins, J. M., and S. Greenland. 1992. Identifiability and exchangeability for direct and indirect effects. Epidemiology 3:143–55.

    Article  Google Scholar 

  • Russell-Jones, D., and R. Khan. 2007. Insulin-associated weight gain in diabetes – causes, effects and coping strategies. Diabetes Obesity and Metabolism 9:799–812.

    Article  Google Scholar 

  • Sempos, C. T., D. E. Bild, and T. A. Manolio. 1999. Overview of the Jackson Heart Study: A study of cardiovascular diseases in African American men and women. American Journal of the Medical Sciences 317:142–46.

    Article  Google Scholar 

  • VanderWeele, T., and S. Vansteelandt. 2013. Mediation analysis with multiple mediators. Epidemiologic Methods 2:95–115.

    MATH  Google Scholar 

  • VanderWeele, T. J. 2009. Concerning the consistency assumption in causal inference. Epidemiology 20:880–83.

    Article  Google Scholar 

  • VanderWeele, T. J., and S. Vansteelandt. 2010. Odds ratios for mediation analysis for a dichotomous outcome. American Journal of Epidemiology 172:1339–48.

    Article  Google Scholar 

  • Wang, J., M. R. Spitz, C. I. Amos, A. V. Wilkinson, X. Wu, and S. Shete. 2010. Mediating effects of smoking and chronic obstructive pulmonary disease on the relation between the CHRNA5-A3 genetic locus and lung cancer risk. Cancer 116:3458–62.

    Article  Google Scholar 

  • Wang, W., and J. M. Albert. 2012. Estimation of mediation effects for zero-inflated regression models 2012. Statistics in Medicine 31:3118–32.

    Article  MathSciNet  Google Scholar 

  • Wang, W., S. Nelson, and J. M. Albert. 2013. Estimation of causal mediation effects for a dichotomous outcome in multiple-mediator models using the mediation formula. Statistics in Medicine 32:4211–28.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Zhang, B. Assessing natural direct and indirect effects for a continuous exposure and a dichotomous outcome. J Stat Theory Pract 10, 574–587 (2016). https://doi.org/10.1080/15598608.2016.1203843

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1080/15598608.2016.1203843

Keywords

AMS Subject Classification

Navigation