Skip to main content
Log in

Statistical inference on the drift parameter in symmetric stable Lévy process with a deterministic drift

  • Article
  • Published:
Journal of Statistical Theory and Practice Aims and scope Submit manuscript

Abstract

In statistical inference on the drift parameter a in the symmetric stable Lévy process \(L_t^\delta \) with the parameter of stability δ ∈ (0, 2] with a deterministic drift \(Y_t^\delta = ad(t) + L_t^\delta \), there are some simple options how to do it. We may, for example, base this inference on the properties of the stable distribution. Although this method is very simple, it turns out that it is more appropriate to use inverse methods. For the hypotheses testing about the drift parameter a, it is more proper to standardize the observed process and to use inverse methods based on the first exit time of the observed process of a prespecified interval until some given time. These procedures are illustrated, and their times of decision are compared with the direct approach. Other generalizations are possible when the random part is a stochastic integral of a known, deterministic function with respect to the symmetric stable Lévy process or a symmetric stochastic integral of a random (but observable) process with respect to the symmetric stable Lévy process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Applebaum, D. 2004. Lévy processes and stochastic calculus, 2nd ed. Cambridge, UK: Cambridge Studies in Advanced Mathematics.

    Book  Google Scholar 

  • Brorsen, B., and S. Yang. 1990. Maximum likelihood estimates of symmetric stable distribution parameters. Communications in Statistics—Simulation and Computation 19:1459–64.

    Article  Google Scholar 

  • Fama, E. 1965. The behavior of stock market prices. Journal of Business 38:34–105.

    Article  Google Scholar 

  • Fama, E. 1971. Risk, return and equilibrium. Journal of Political Economy 79:30–55.

    Article  Google Scholar 

  • Fama, E., and R. Roll. 1968. Some properties of symmetric stable distributions. Journal of the American Statistical Association 63:817–36.

    MathSciNet  Google Scholar 

  • Fama, E., and R. Roll. 1971. Parameter estimates for symmetric stable distributions. Journal of the American Statistical Association 66:331–38.

    Article  Google Scholar 

  • Ferebe, B. 1982. Tests with parabolic boundary for the drift of a Wiener process. Annals of Statistics 10:882–94.

    Article  MathSciNet  Google Scholar 

  • Galtchouk, L. I., and P. P. Nobelis. 1999. Sequential variational testing hypotheses on the Wiener process under delayed observations. Statistical Inference for Stochastic Processes 2:31–56.

    Article  MathSciNet  Google Scholar 

  • Garcia, R., E. Renault, and D. Veredas. 2011. Estimation of stable distributions by indirect inference. Journal of Econometrics 161:325–37.

    Article  MathSciNet  Google Scholar 

  • Hu, Y., and H. Long. 2007. Parameter estimation for Ornstein–Uhlenbeck processes driven by α-stable Lévy motions. Communications on Stochastic Analysis 1:175–92.

    Article  MathSciNet  Google Scholar 

  • Hu, Y., and H. Long. 2009a. On the singularity of least squares estimator for mean-reverting α-stable motions. Acta Mathematica Scientia 29:599–608.

    Article  MathSciNet  Google Scholar 

  • Hu, Y. and H. Long. 2009b. Least squares estimator for Ornstein–Uhlenbeck processes driven by α-stable motions. Stochastic Processes and their Applications 119:2465–80.

    Article  MathSciNet  Google Scholar 

  • Hurst, S. R., E. Platen, and S. T. Rachev. 1999. Option pricing for a logstable asset price model. Mathematical and Computer Modelling 29:105–119.

    Article  MathSciNet  Google Scholar 

  • Joulin, A. 2007. On maximal inequalities for stable stochastic integrals. Potential Analysis 26:57–78.

    Article  MathSciNet  Google Scholar 

  • Kallenberg, O. 1992. Some time change representations of stable integrals, via predictable transformations of local martingales. Stochastic Processes and Their Applications 40:199–223.

    Article  MathSciNet  Google Scholar 

  • Kogon, S., and D. Williams. 1998. Characteristic function based estimation of stable distribution parameters. In A practical guide to heavy tails: statistical techniques and applications, ed. R. Adler, R. Feldman, and M. Taqqu, 311–335. Boston, MA: Birkhäuser.

    Google Scholar 

  • Liptser, R. S., and A. N. Shiryaev. 2000. Statistics of random processes II. Applications. New York, NY: Springer.

    Google Scholar 

  • Long, H. 2010. Parameter estimation for a class of stochastic differential equations driven by small stable noises from discrete observations. Acta Mathematica Scientia 30:645–63.

    Article  MathSciNet  Google Scholar 

  • Long, H., Y. Shimizu, and W. Sun. 2013. Least squares estimators for discretely observed stochastic processes driven by small Lévy noises. Journal of Multivariate Analysis 116:422–39.

    Article  MathSciNet  Google Scholar 

  • Ma, C. 2010. A note on “Least squares estimator for discretely observed Ornstein-Uhlenbeck processes with small Lévy noises”. Statistics and Probability Letters 80:1528–31.

    Article  MathSciNet  Google Scholar 

  • Mandelbrot, B. B. 1963. The variation of certain speculative prices. Journal of Business 36:394–419.

    Article  Google Scholar 

  • Mandelbrot, B. B. 1997. Fractals and scaling in finance. New York, NY: Springer.

    Book  Google Scholar 

  • Masuda, H. 2005. Simple estimators for parametric markovian trend of ergodic processes based on sampled data. Japan Statistical Society 35:147–170.

    Article  MathSciNet  Google Scholar 

  • McCulloch, J. 1986. Simple consistent estimators of stable distribution parameters. Communications in Statistics—Simulation and Computation 15:1109–36.

    Article  MathSciNet  Google Scholar 

  • Mittnik, S., S. Rachev, and E. Schwartz. 2002. Value-at-risk and asset allocation with stable return distributions. Allgemeines Statistisches Archiv 86:53–68.

    Article  MathSciNet  Google Scholar 

  • Nolan, J. 2001. Maximum likelihood estimation and diagnostics for stable distributions. In Lévy processes: Theory and application, ed. O. Barndorff-Nielsen, T. Mikosch, and I. Resnick, 379–400. Boston, MA: Birkhauser.

    Chapter  Google Scholar 

  • Ogihara, T., and N. Yoshida. 2011. Quasi-likelihood analysis for the stochastic differential equation with jumps. Statistical Inference for Stochastic Processes 14:189–229.

    Article  MathSciNet  Google Scholar 

  • Ortobelli, S., I. Huber, and E. Schwartz. 2002. Portfolio selection with stable distributed returns. Mathematical Methods of Operations Research 55:265–300.

    Article  MathSciNet  Google Scholar 

  • Paulson, A., E. Holcomb, and R. Leitch. 1975. The estimation of the parameters of the stable laws. Biometrika 62:163–70.

    Article  MathSciNet  Google Scholar 

  • Press, S. 1972. Estimation in univariate and multivariate stable distributions. Journal of the Americal Statistical Association 67:842–46.

    Article  MathSciNet  Google Scholar 

  • Rosinski, J., and W. A. Woyczynski. 1986. On Itô stochastic integration with respect to p-stable motion: Inner clock, integrability of sample paths, double and multiple integrals. Annals of Probability 14:271–86.

    Article  MathSciNet  Google Scholar 

  • Samorodnitsky, G., and M. S. Taqqu. 1994. Stable non-Gaussian random processes: Stochastic models with infinite variance. New York, NY: Chapman and Hall.

    MATH  Google Scholar 

  • Shimizu, Y. 2006. M-Estimation for discretely observed ergodic diffusion processes with infinitely many jumps. Statistical Inference for Stochastic Processes 9:179–225.

    Article  MathSciNet  Google Scholar 

  • Shimizu, Y., and N. Yoshida. 2006. Estimation of parameters for diffusion processes with jumps from discrete observations. Statistical Inference for Stochastic Processes 9:227–77.

    Article  MathSciNet  Google Scholar 

  • Stibůrek, D. 2013. Statistical inference about the drift parameter in stochastic processes. Acta Universitatis Palackianae Olomucensis, Facultas Rerum Naturalium, Mathematica 52:107–20.

    MathSciNet  MATH  Google Scholar 

  • Stibůrek, D. 2015. Statistical inference on the drift parameter in fractional Brownian motion with a deterministic drift. Communications in Statistics. doi:10.1080/03610926.2015.106784.

  • Tokat, Y., and E. Schwartz. 2002. The impact of fat tailed returns on asset allocation. Mathematical Methods of Operations Research 55:165–85.

    Article  MathSciNet  Google Scholar 

  • Weron, A., and R. Weron. 1995. Computer simulation of Lévy α-stable variables and processes. Lecture Notes in Physics 457:379–92.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Stibůrek.

Additional information

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/ujsp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stibůrek, D. Statistical inference on the drift parameter in symmetric stable Lévy process with a deterministic drift. J Stat Theory Pract 10, 389–404 (2016). https://doi.org/10.1080/15598608.2016.1156038

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1080/15598608.2016.1156038

Keywords

AMS Subject Classification

Navigation