Skip to main content
Log in

Transversals in m × n Arrays

  • Published:
Journal of Statistical Theory and Practice Aims and scope Submit manuscript

Abstract

An m by n array consists of mn cells in m rows and n columns, where 2 < m < n. A partial transversal in an m by n array is a set of m cells, one from each row and no two from the same column. A transversal in an m by n array is a partial transversal in which m symbols are distinct. Define L(m, n) as the largest integer such that if each symbol in an m by n array appears at most L(m, n) times, then the array must have a transversal. In this article, we first obtain a better lower bound of L(tm, n) by using a probabilistic method and then find L(m, n) for certain positive integers m and n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akbari, S., O. Etesami, H. Mahini, M. Mahmoody, and A. Sharifi. 2006. Transversals in long rectangular arrays. Discrete Math., 306, 3011–3013.

    Article  MathSciNet  Google Scholar 

  • Balasubramanian, K. 1990. On transversals of Latin squares. Linear Algebra Appl., 131, 125–129.

    Article  MathSciNet  Google Scholar 

  • Drake, D. A. 1977. Maximal sets of Latin squares and partial transversal. J. Stat. Plan. Inference, 1, 143–149.

    Article  MathSciNet  Google Scholar 

  • Erd˝os, P., and J. Spencer. 1991. Lopsided Lovász local lemma and Latin transversals. Discrete Appl. Math., 30, 151–154.

    Article  MathSciNet  Google Scholar 

  • Fu, H.-L., S.-C. Lin, and C.-M. Fu. 2002. The length of a partial transversal in a Latin square. J. Combin. Math. Combin. Comput. 43, 57–64.

    MathSciNet  MATH  Google Scholar 

  • Koksma, K. K. 1969. A lower bound for the order of a partial transversal in a Latin square. J. Combin. Theory Ser. A 7, 94–95.

    Article  MathSciNet  Google Scholar 

  • Park, E. T. 1989. Personal Correspondence.

  • Ryser, H. J. 1967. Neuere Problem in der Kombinatorik, in Vorträge über Kombinatorik. Oberwohlfach, 69–61.

    Google Scholar 

  • Stein, S. K., and S. Szabó. 2006. The number of distinct symbols in sections of rectangular arrays. Discrete Math., 306, 254–261.

    Article  MathSciNet  Google Scholar 

  • Stinson, D. R. 2004. Combinatorial designs constructions and analysis. New York, Springer.

    MATH  Google Scholar 

  • Shor, P. W. 1982. A lower bound of the length of a partial transversal in a Latin square. J. Combin. Theory Ser. A, 33, 1–8.

    Article  MathSciNet  Google Scholar 

  • Hatami, P., and W. Shor. 2008. A lower bound for the length of a partial transversal in a Latin square, revised version. J. Combin. Theory Ser. A, 115(7), 1103–1113.

    Article  MathSciNet  Google Scholar 

  • Woolbright, D. E. 1978. An n by n Latin square has a transversal with at least n − √n. J. Combin. Theory Ser. A, 24, 235–237.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hung-Lin Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, HL., Lee, CC. Transversals in m × n Arrays. J Stat Theory Pract 6, 139–146 (2012). https://doi.org/10.1080/15598608.2012.647554

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1080/15598608.2012.647554

Keywords

Navigation