Skip to main content
Log in

‘Motor cognition’ — what is it and is the cerebellum involved?

  • Original Article
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Motor cognition encompasses how we understand our own movement, and how movement helps us to understand the world. Here, the role of the cerebellum is discussed in two processes that could be considered aspects of motor cognition: predicting movement outcomes and understanding the meaning of movements. Recent behavioral, anatomical, and neurophysiological findings related to these processes are discussed. There are data to support a cerebellar role in predicting movement outcomes, which could be used both for motor control and for distinguishing sensory inputs due to our own movements from external influences. The data for a cerebellar role in understanding the meaning of movement are mixed, although anatomical findings suggest that it probably has some influence that bears further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miall RC, Weir DJ, Wolpert DM, Stein JF. Is the cerebellum a Smith predictor? J Mot Behav. 1993;25:203–16.

    PubMed  Google Scholar 

  2. Wolpert DM, Miall RC. Forward models for physiological motor control. Neural Netw. 1996;9:1265–79.

    Article  PubMed  Google Scholar 

  3. Frith CD, Blakemore SJ, Wolpert DM. Abnormalities in the awareness and control of action. Philos Trans R Soc Lond B Biol Sci. 2000;355(1404):1771–88.

    Article  PubMed  CAS  Google Scholar 

  4. von Holst E, Mittelstaedt H. Das reafferenzprinzip [The principle of reaffference]. Naturwissenschaften. 1950;37: 464–76.

    Article  Google Scholar 

  5. Bell CC. An efference copy which is modified by reafferent input. Science. 1981;214(4519):450–3.

    Article  PubMed  CAS  Google Scholar 

  6. Blakemore SJ, Wolpert DM, Frith CD. Central cancellation of self-produced tickle sensation. Nat Neurosci. 1998;1: 635–40.

    Article  PubMed  CAS  Google Scholar 

  7. Lindner A, Haarmeier T, Erb M, Grodd W, Thier P. Cerebrocerebellar circuits for the perceptual cancellation of eye-movement-induced retinal image motion. J Cogn Neurosci. 2006;18:1899–912.

    Article  PubMed  Google Scholar 

  8. Bell C, Bodznick D, Montgomery J, Bastian J. The generation and subtraction of sensory expectations within cerebellumlike structures. Brain Behav Evol. 1997;50 (Suppl. 1):17–31.

    Article  PubMed  Google Scholar 

  9. Bastian J. Pyramidal-cell plasticity in weakly electric fish: a mechanism for attenuating responses to reafferent electrosensory inputs. J Comp Physiol [A], 1995;176:63–73.

    CAS  Google Scholar 

  10. Montgomery JC, Bodznick D. An adaptive filter that cancels self-induced noise in the electrosensory and lateral line mechanosensory systems of fish. Neurosci Lett. 1994;174: 145–8.

    Article  PubMed  CAS  Google Scholar 

  11. Weiskrantz L, Elliott J, Darlington C. Preliminary observations on tickling oneself. Nature. 1971;230(5296):598–9.

    Article  PubMed  CAS  Google Scholar 

  12. Blakemore SJ, Frith CD, Wolpert DM. Spatio-temporal prediction modulates the perception of self-produced stimuli. J Cogn Neurosci. 1999;11:551–9.

    Article  PubMed  CAS  Google Scholar 

  13. Bastian AJ. Learning to predict the future: the cerebellum adapts feedforward movement control. Curr Opin Neurobiol. 2006;16:645–9.

    Article  PubMed  CAS  Google Scholar 

  14. Umilta MA, Kohler E, Gallese V, Fogassi L, Fadiga L, Keysers C, et al. I know what you are doing. a neurophysiological study. Neuron. 2001;31:155–65.

    Article  PubMed  CAS  Google Scholar 

  15. Rizzolatti G, Craighero L. The mirror-neuron system. Annu Rev Neurosci. 2004;27:169–92.

    Article  PubMed  CAS  Google Scholar 

  16. Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, Rizzolatti G. Cortical mechanisms of human imitation. Science. 1999;286(5449):2526–8.

    Article  PubMed  CAS  Google Scholar 

  17. Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V, et al. Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. Eur J Neurosci. 2001;13:400–4.

    Article  PubMed  CAS  Google Scholar 

  18. Iacoboni M, Dapretto M. The mirror neuron system and the consequences of its dysfunction. Nat Rev Neurosci. 2006;7: 942–51.

    Article  PubMed  CAS  Google Scholar 

  19. Dum RP, Strick PL. An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol. 2003;89:634–9.

    Article  PubMed  Google Scholar 

  20. Clower DM, West RA, Lynch JC, Strick PL. The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum. J Neurosci. 2001;21:6283–91.

    PubMed  CAS  Google Scholar 

  21. Calvo-Merino B, Grezes J, Glaser DE, Passingham RE, Haggard P. Seeing or doing? Influence of visual and motor familiarity in action observation. Curr Biol. 2006;16: 1905–10.

    Article  PubMed  CAS  Google Scholar 

  22. Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT. Throwing while looking through prisms. I. Focal olivocerebellar lesions impair adaptation. Brain. 1996;119 (Pt 4):1183–98.

    Article  PubMed  Google Scholar 

  23. Maschke M, Gomez CM, Ebner TJ, Konczak J. Hereditary cerebellar ataxia progressively impairs force adaptation during goal-directed arm movements. J Neurophysiol. 2004;91: 230–8.

    Article  PubMed  Google Scholar 

  24. Smith MA, Shadmehr R. Intact ability to learn internal models of arm dynamics in Huntington’s disease but not cerebellar degeneration. J Neurophysiol. 2005;93:2809–21.

    Article  PubMed  Google Scholar 

  25. Morton SM, Bastian AJ. Cerebellar contributions to locomotor adaptations during splitbelt treadmill walking. J Neurosci. 2006;26:9107–16.

    Article  PubMed  CAS  Google Scholar 

  26. Lang CE, Bastian AJ. Cerebellar subjects show impaired adaptation of anticipatory EMG during catching. J Neurophysiol. 1999;82:2108–19.

    PubMed  CAS  Google Scholar 

  27. Leggio MG, Molinari M, Neri P, Graziano A, Mandolesi L, Petrosini L. Representation of actions in rats: the role of cerebellum in learning spatial performances by observation. Proc Natl Acad Sci USA. 2000;97:2320–5.

    Article  PubMed  CAS  Google Scholar 

  28. Flanagan JR, Johansson RS. Action plans used in action observation. Nature. 2003;424(6950):769–71.

    Article  PubMed  CAS  Google Scholar 

  29. Ramnani N, Miall RC. A system in the human brain for predicting the actions of others. Nat Neurosci. 2004;7:85–90.

    Article  PubMed  CAS  Google Scholar 

  30. Grossman E, Donnelly M, Price R, Pickens D, Morgan V, Neighbor G, et al. Brain areas involved in perception of biological motion. J Cogn Neurosci. 2000;12:711–20.

    Article  PubMed  CAS  Google Scholar 

  31. Decety J, Perani D, Jeannerod M, Bettinardi V, Tadary B, Woods R, et al. Mapping motor representations with positron emission tomography. Nature. 1994;371(6498):600–2.

    Article  PubMed  CAS  Google Scholar 

  32. Molnar-Szakacs I, Kaplan J, Greenfield PM, Iacoboni M. Observing complex action sequences: The role of the frontoparietal mirror neuron system. Neuroimage. 2006;33:923–35.

    Article  PubMed  Google Scholar 

  33. Shergill SS, Samson G, Bays PM, Frith CD, Wolpert DM. Evidence for sensory prediction deficits in schizophrenia. Am J Psychiatry. 2005;162:2384–6.

    Article  PubMed  Google Scholar 

  34. Rogers SJ, Hepburn S, Wehner E. Parent reports of sensory symptoms in toddlers with autism and those with other developmental disorders. J Autism Dev Disord. 2003;33: 631–42.

    Article  PubMed  Google Scholar 

  35. Blakemore SJ, Tavassoli T, Calo S, Thomas RM, Catmur C, Frith U, et al. Tactile sensitivity in Asperger syndrome. Brain Cogn. 2006;61:5–13.

    Article  PubMed  Google Scholar 

  36. Blake R, Turner LM, Smoski MJ, Pozdol SL, Stone WL. Visual recognition of biological motion is impaired in children with autism. Psychol Sci. 2003;14:151–7.

    Article  PubMed  Google Scholar 

  37. Williams JH, Whiten A, Singh T. A systematic review of action imitation in autistic spectrum disorder. J Autism Dev Disord. 2004;34:285–99.

    Article  PubMed  CAS  Google Scholar 

  38. Williams JH, Whiten A, Suddendorf T, Perrett DI. Imitation, mirror neurons and autism. Neurosci Biobehav Rev. 2001;25:287–95.

    Article  PubMed  CAS  Google Scholar 

  39. Dapretto M, Davies MS, Pfeifer JH, Scott AA, Sigman M, Bookheimer SY, et al. Understanding emotions in others: mirror neuron dysfunction in children with autism spectrum disorders. Nat Neurosci. 2006;9:28–30.

    Article  PubMed  CAS  Google Scholar 

  40. Bauman ML, Kemper TL. Neuroanatomic observations of the brain in autism: a review and future directions. Int J Dev Neurosci. 2005;23:183–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy J. Bastian PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuentes, C.T., Bastian, A.J. ‘Motor cognition’ — what is it and is the cerebellum involved?. Cerebellum 6, 232–236 (2007). https://doi.org/10.1080/14734220701329268

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1080/14734220701329268

Key words

Navigation