Skip to main content
Log in

Behavioural aspects of cerebellar function in adults with Asperger syndrome

  • Original Article
  • Scientific Papers
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Aside from social deficits, Asperger and autistic individuals also exhibit motor control abnormalities such as impaired gait, balance, manual dexterity and grip. One brain area that has consistently been reported on autopsy and imaging studies to be abnormal in such individuals is the cerebellum. As the cerebellum controls sensorimotor coordination and lesions here typically cause hypotonia, dysmetria and dyscoordination, we performed a series of quantitative tests aimed at investigating cerebellar function in Asperger individuals. Tests examining visually guided movement (rapid pointing), speeded complex movement (finger tapping, rapid hand turning), muscle tone (catching dropped weight), prediction, coordination and timing (balance, grip force and interval timing) were conducted on 12 Asperger subjects and 12 age and IQ matched controls. In comparison to control subjects, Asperger subject’s demonstrated: (i) decreased pointing accuracy and rate, (ii) increased postural instability, and (iii) decreased timing accuracy. IQ was found to co-vary with some parameters of each of these tasks and no further impairments were found on the remaining tests. We suggest that these specific deficits reflect impairment in the ability to integrate sensory input with appropriate motor commands and are consistent with cerebellar dysfunction in Asperger syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hill EL, Frith U. Understanding autism: Insights from mind and brain. Philos Trans R Soc Lond B Biol Sci. 2003;358:281–9.

    Article  PubMed  Google Scholar 

  2. Frith U. Emanuel Miller lecture: Confusions and controversies about Asperger syndrome. J Child Psychol.Psychiatry. 2004;45:672–86.

    Article  PubMed  Google Scholar 

  3. Hallett M, Lebiedowska MK, Thomas SL, Stanhope SJ, Denckla MB, Rumsey J. Locomotion of autistic adults. Arch Neurol. 1993;50:1304–08.

    PubMed  CAS  Google Scholar 

  4. Weimer AK, Schatz AM, Lincoln A, Ballantyne AO, Trauner DA. ‘Motor’ impairment in Asperger syndrome: evidence for a deficit in proprioception. J Dev Behav Pediatr. 2001;22:92–101.

    PubMed  CAS  Google Scholar 

  5. Rinehart NJ, Bradshaw JL, Brereton AV, Tonge BJ. Movement preparation in high-functioning autism and Asperger disorder: A serial choice reaction time task involving motor reprogramming. J Autism Dev Disord. 2001;31:79–88.

    Article  PubMed  CAS  Google Scholar 

  6. Hardan AY, Kilpatrick M, Keshavan MS, Minshew NJ. Motor performance and anatomic magnetic resonance imaging (MRI) of the basal ganglia in autism. J Child Neurol. 2003;18:317–24.

    Article  PubMed  Google Scholar 

  7. Ghaziuddin M, Butler E, Tsai L, Ghaziuddin N. Is clumsiness a marker for Asperger syndrome? J Intellect Disabil Res. 1994;3(Pt 5): 519–27.

    Google Scholar 

  8. Gillberg C. Asperger syndrome in 23 Swedish children. Dev Med Child Neurol. 1989;31:520–31.

    PubMed  CAS  Google Scholar 

  9. Green D, Baird G, Barnett AL, Henderson L, Huber J, Henderson SE. The severity and nature of motor impairment in Asperger’s syndrome: A comparison with specific developmental disorder of motor function. J Child Psychol Psychiatry. 2002;43:655–68.

    Article  PubMed  Google Scholar 

  10. Miyahara M, Tsujii M, Hori M, Nakanishi K, Kageyama H, Sugiyama T. Brief report: Motor incoordination in children with Asperger syndrome and learning disabilities. J Autism Dev Disord. 1997;27:595–603.

    Article  PubMed  CAS  Google Scholar 

  11. Ito M. Historical review of the significance of the cerebellum and the role of Purkinje cells in motor learning. Ann NY Acad Sci. 2002;978:273–88.

    Article  PubMed  Google Scholar 

  12. Miall RC, Reckess GZ, Imamizu H. The cerebellum coordinates eye and hand tracking movements. Nat Neurosci. 2001;4:638–44.

    Article  PubMed  CAS  Google Scholar 

  13. Thach WT, Goodkin HP, Keating JG. The cerebellum and the adaptive coordination of movement. Ann Rev Neurosci. 1992;15:403–42.

    Article  PubMed  CAS  Google Scholar 

  14. Van Donkelaar P, Lee RG. Interactions between the eye and hand motor systems: Disruptions due to cerebellar dysfunction. J Neurophysiol. 1994;72:1674–85.

    PubMed  Google Scholar 

  15. Ivry R, Keele SW, Diener HC. Dissociation of the lateral and medial cerebellum in movement timing and movement execution. Exp Brain Res. 1988;73:167–80.

    Article  PubMed  CAS  Google Scholar 

  16. Ivry R, Keele SW. Timing functions of the cerebellum. J Cogn Neurosci. 1989;1:136–52.

    Article  Google Scholar 

  17. Allen G, Muller RA, Courchesne E. Cerebellar function in autism: Functional magnetic resonance image activation during a simple motor task. Biol Psychiatry. 2004;56:269–78.

    Article  PubMed  Google Scholar 

  18. Bailey A, Luthert P, Dean A, et al. A clinicopathological study of autism. Brain. 1998;121(Pt 5): 889–905.

    Article  PubMed  Google Scholar 

  19. Courchesne E. Brainstem, cerebellar and limbic neuroanatomical abnormalities in autism. Curr Opin Neurobiol. 1997;7:269–78.

    Article  PubMed  CAS  Google Scholar 

  20. Courchesne E, Townsend J, Saitoh O. The brain in infantile autism: Posterior fossa structures are abnormal. Neurology. 1994;44:214–23.

    PubMed  CAS  Google Scholar 

  21. Kemper TL, Bauman M. Neuropathology of infantile autism. J Neuropathol Exp Neurol. 1998;57:645–52.

    PubMed  CAS  Google Scholar 

  22. Abell F, Krams M, Ashburner J, et al. The neuroanatomy of autism: A voxel-based whole brain analysis of structural scans. Neuroreport. 1999;10:1647–51.

    Article  PubMed  CAS  Google Scholar 

  23. Murakami JW, Courchesne E, Press GA, Yeung-Courchesne R, Hesselink JR. Reduced cerebellar hemisphere size and its relationship to vermal hypoplasia in autism. Arch Neurol. 1989;46:689–94.

    PubMed  CAS  Google Scholar 

  24. Wassmer E, Davies P, Whitehouse WP, Green SH. Clinical spectrum associated with cerebellar hypoplasia. Pediatr Neurol. 2003;28:347–51.

    Article  PubMed  Google Scholar 

  25. Allen G, Buxton RB, Wong EC, Courchesne E. Attentional activation of the cerebellum independent of motor involvement. Science. 1997;275:1940–3.

    Article  PubMed  CAS  Google Scholar 

  26. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(Pt 4): 561–79.

    Article  PubMed  Google Scholar 

  27. Courchesne E, Townsend J, Akshoomoff NA, et al. Impairment in shifting attention in autistic and cerebellar patients. Behav Neurosci. 1994;108:848–65.

    Article  PubMed  CAS  Google Scholar 

  28. Singer-Harris NS, Courchesne E, Townsend J, Carper RA, Lord C. Neuroanatomic contributions to slowed orienting of attention in children with autism. Brain Res Cogn Brain Res. 1999;8:61–71.

    Article  Google Scholar 

  29. Dow RS, Moruzzi G, editors. The physiology and pathology of the cerebellum. Minneapolis: University of Minnesota Press, 1958.

    Google Scholar 

  30. Henderson SE, Sugden D, editors. The movement assessment battery for children. London: The Psychological Corporation, 1992.

    Google Scholar 

  31. Bruininks RH, editor. The Bruininks-Oseretsky test of motor proficiency. Circle Pines, MN: American Guidance Service, 1978.

    Google Scholar 

  32. Baron-Cohen S, Wheelwright S, Skinner R, Martin J, Clubley E. The autism-spectrum quotient (AQ): evidence from Asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. J Autism Dev Disord. 2001;31:5–17.

    Article  PubMed  CAS  Google Scholar 

  33. Szatmari P, Tuff L, Finlayson AJ, Bartolucci G. Asperger’s syndrome and autism: Neurocognitive aspects. J Am Acad Child Adoles Psychiatry. 1990;29:130–6.

    Article  CAS  Google Scholar 

  34. Miall RC, Christensen LO. The effect of rTMS over the cerebellum in normal human volunteers on peg-board movement performance. Neurosci.Lett. 2004;371:185–9.

    Article  PubMed  CAS  Google Scholar 

  35. Kawato M, Kuroda T, Imamizu H, Nakano E, Miyauchi S, Yoshioka T. Internal forward models in the cerebellum: fMRI study on grip force and load force coupling. Prog Brain Res. 2003;142:171–88.

    PubMed  Google Scholar 

  36. Muller F, Dichgans J. Dyscoordination of pinch and lift forces during grasp in patients with cerebellar lesions. Exp Brain Res. 1994;101:485–92.

    Article  PubMed  CAS  Google Scholar 

  37. Schmitz C, Martineau J, Barthelemy C, Assaiante C. Motor control and children with autism: deficit of anticipatory function? Neurosci Lett. 2003;348:17–20.

    Article  PubMed  CAS  Google Scholar 

  38. Lacquaniti F, Maioli C. Adaptation to suppression of visual information during catching. J Neurosci. 1989;9:149–59.

    PubMed  CAS  Google Scholar 

  39. Lang CE, Bastian AJ. Cerebellar subjects show impaired adaptation of anticipatory EMG during catching. J Neurophysiol. 1999;82:2108–19.

    PubMed  CAS  Google Scholar 

  40. Diener H, Dichgans J, Guschlbauer B, Bacher M, Langenbach P. Disturbances of motor preparation in basal ganglia and cerebellar disorders. Prog Brain Res. 1989;80:481–8.

    Article  PubMed  CAS  Google Scholar 

  41. Ouchi Y, Okada H, Yoshikawa E, Nobezawa S, Futatsubashi M. Brain activation during maintenance of standing postures in humans. Brain. 1999;122(Pt 2): 329–38.

    Article  PubMed  Google Scholar 

  42. Baloh RW, Jacobson KM, Beykirch K, Honrubia V. Static and dynamic posturography in patients with vestibular and cerebellar lesions. Arch Neurol. 1998;55:649–54.

    Article  PubMed  CAS  Google Scholar 

  43. Ho BC, Mola C, Andreasen NC. Cerebellar dysfunction in neuroleptic naive schizophrenia patients: Clinical, cognitive, and neuroanatomic correlates of cerebellar neurologic signs. Biol Psychiatry. 2004;55:1146–53.

    Article  PubMed  Google Scholar 

  44. Marvel CL, Schwartz BL, Rosse RB. A quantitative measure of postural sway deficits in schizophrenia. Schizophr Res. 2004;68:363–72.

    Article  PubMed  Google Scholar 

  45. Goldberg MC, Landa R, Lasker A, Cooper L, Zee DS. Evidence of normal cerebellar control of the vestibulo-ocular reflex (VOR) in children with high-functioning autism. J Autism Dev Disord. 2000;30:519–24.

    Article  PubMed  CAS  Google Scholar 

  46. Minshew NJ, Luna B, Sweeney JA. Oculomotor evidence for neocortical systems but not cerebellar dysfunction in autism. Neurology. 1999;52:917–22.

    PubMed  CAS  Google Scholar 

  47. Takarae Y, Minshew NJ, Luna B, Sweeney JA. Oculomotor abnormalities parallel cerebellar histopathology in autism. J Neurol Neurosurg Psychiatry. 2004;75:1359–61.

    Article  PubMed  CAS  Google Scholar 

  48. Jancke L, Loose R, Lutz K, Specht K, Shah NJ. Cortical activations during paced finger-tapping applying visual and auditory pacing stimuli. Brain Res Cogn Brain Res. 2000;10:51–66.

    Article  PubMed  CAS  Google Scholar 

  49. Rao SM, Harrington DL, Haaland KY, Bobholz JA, Cox RW, Binder JR. Distributed neural systems underlying the timing of movements. J Neurosci. 1997;17:5528–35.

    PubMed  CAS  Google Scholar 

  50. Sears LL. Finn PR, Steinmetz JE. Abnormal classical eyeblink conditioning in autism. J Autism Dev Disord. 1994;24:737–51.

    Article  PubMed  CAS  Google Scholar 

  51. Ivry RB, Spencer RM. The neural representation of time. Curr Opin Neurobiol. 2004;14:225–32.

    Article  PubMed  CAS  Google Scholar 

  52. Lewis PA, Miall RC. Distinct systems for automatic and cognitively controlled time measurement: Evidence from neuroimaging. Curr Opin Neurobiol. 2003;13:250–5.

    Article  PubMed  CAS  Google Scholar 

  53. Castelli F, Frith C, Happe F, Frith U. Autism, Asperger syndrome and brain mechanisms for the attribution of mental states to animated shapes. Brain. 2002;125:1839–49.

    Article  PubMed  Google Scholar 

  54. Theoret H, Haque J, Pascual-Leone A. Increased variability of paced finger tapping accuracy following repetitive magnetic stimulation of the cerebellum in humans. Neurosci Lett. 2001;306:29–32.

    Article  PubMed  CAS  Google Scholar 

  55. Morton J, Frith U. Causal modelling: A structural approach to developmental psychopathology. In: Cichetti D, et al., editor. Developmental psychopathology: Vol. 1. Theory and methods. New York: Wiley. 1995; pp 357–90.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma Gowen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gowen, E., Miall, R.C. Behavioural aspects of cerebellar function in adults with Asperger syndrome. Cerebellum 4, 279–289 (2005). https://doi.org/10.1080/14734220500355332

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14734220500355332

Key words

Navigation