Skip to main content
Log in

A review of heat shock protein induction following cerebellar injury

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Exposure of cells to stressful environments such as heat shock, ischemia, trauma and disease, induces the cellular expression of heat shock proteins (Hsps). Since the discovery of heat shock proteins in the early 1960s, efforts to understand their function in both stressed and non-stressed cells have remained the focus of a vast collection of researchers. Post-injury heat shock protein induction is believed to identify regions of reversible cell injury as well as contribute to repair and protective mechanisms following stress. With the role of cerebellum expanding to include a number of cognitive processes in addition to contributing to motor coordination, research contributions that further our understanding of cerebellar repair strategies following injury are significant. Following cellular stress, heat shock protein expression was observed in both neuronal and glial cell populations in the injured cerebellum. Specifically, Hsp27 expression was localized primarily in Purkinje cells and glial cells within the injured cerebellum, whereas Hsp72 induction was more prominent in the granule cell layer of the cerebellum. Thus, there appears to be a preferential expression of different families of heat shock proteins in different cell populations in the injured cerebellum. There are also distinct post-injury time frames of induction for each family of heat shock protein, emphasizing differences in cellular functional requirements for each family of heat shock protein. Hsp27 was expressed immediately following injury and continued up to 20 days post-injury whereas Hsp72 was expressed immediately following injury and disappeared by 4 days post-injury, suggesting the latter contributes to processes involved in the initial repair of injured cells. This review discusses heat shock protein induction patterns in both in vivo and in vitro cerebellar injury models and provides suggestions as to the functional role of heat shock proteins in the injured cerebellum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Latchman DS. Stress proteins: an overview. In: Latchman DS, editor. Stress Proteins. New York: Springer, 1999: 1–7.

    Google Scholar 

  2. Berendes HD. Salivary gland function and chromosomal puffing patterns in Drosophila hydei. Chromosoma 1965; 17: 35–77.

    Article  PubMed  CAS  Google Scholar 

  3. Schlesinger MJ, Ashburner M, Tissieres A. Heat Shock, from bacteria to man. New York: Cole Spring Harbor Laboratory, 1982.

    Google Scholar 

  4. Lowenstein DH, Chan PH, Miles MF. The stress protein response in cultured neurons: Characterization and evidence for a protective role in excitotoxicity. Neuron 1991; 7: 1053–1060.

    Article  PubMed  CAS  Google Scholar 

  5. Bechtold DA, Brown IR. Heat shock proteins Hsp27 and Hsp32 localize to synaptic sites in the rat cerebellum following hyperther-mia. Brain Res Mol Brain Res 2000; 75: 309–320.

    Article  PubMed  CAS  Google Scholar 

  6. Schiaffonati L, Maroni P, Bendinelli P, Tiberio L, Piccoletti R. Hyperthermia induces gene expression of heat shock protein 70 and phosphorylation of mitogen activated protein kinases in the rat cerebellum. Neurosci Lett 2001; 312: 75–78.

    Article  PubMed  CAS  Google Scholar 

  7. Marini AM, Kozuka M, Lipsky RH, Nowak TS. 70-Kilodalton heat shock protein induction in cerebellar astrocytes and cerebellar granule cells in vitro: comparison with immunocytochemical localization after hyperthemia in vivo. J Neurochem 1990; 54: 1509–1515.

    Article  PubMed  CAS  Google Scholar 

  8. Brown IR. Induction of heat shock (stress) genes in the mammalian brain by hyperthermia and other traumatic events: a current perspective. J Neurosci Res 1990; 27: 247–255.

    Article  PubMed  CAS  Google Scholar 

  9. Plumier JC, Hopkins DA, Robertson HA, Currie RW. Constitutive expression of the 27-kDa heat shock protein (Hsp27) in sensory and motor neurons of the rat nervous system. J Comp Neurol 1997; 384: 409–428.

    Article  PubMed  CAS  Google Scholar 

  10. Armstrong CL, Krueger-Naug AM, Currie RW, Hawkes R. Constitutive expression of heat shock protein HSP25 in the central nervous system of the developing and adult mouse. J Comp Neurol 2001; 434: 262–274.

    Article  PubMed  CAS  Google Scholar 

  11. Gass P, Schroder H, Prior P, Kiessling M. Constitutive expression of heat shock protein 90 (HSP90) in neurons of the rat brain. Neurosci Lett 1994; 182: 188–192.

    Article  PubMed  CAS  Google Scholar 

  12. Izumoto S, Herbert J. Widespread constitutive expression of HSP90 messenger RNA in rat brain. J Neurosci Res 1993; 35: 20–28.

    Article  PubMed  CAS  Google Scholar 

  13. Craig EA, Gambill BD, Nelson RJ. Heat shock proteins: molecular chaperones of protein biogensis. Microbiol Rev 1993; 75: 402–414.

    Google Scholar 

  14. Krueger-Naug AM, Armstrong JN, Plumier JC, Currie RW. Hyperthermic induction of the 27-kDa heat shock protein (Hsp27) in neuroglia and neurons of the rat central nervous system. J Comp Neurol 2000; 428: 495–510.

    Article  PubMed  CAS  Google Scholar 

  15. Manzerra P, Brown IR. Distribution of constitutive and hyperther-mia-inducible heat shock mRNA species (hsp70) in the Purkinje layer of the rabbit cerebellum. Neurochem Res 1992; 17: 559–564.

    Article  PubMed  CAS  Google Scholar 

  16. Masing TE, Brown IR. Cellular localization of heat shock gene expression in rabbit cerebellum by in situ hybridization with plastic-embedded tissue. Neurochem Res 1989; 14: 725–731.

    Article  PubMed  CAS  Google Scholar 

  17. Kato K, Katoh-Semba R, Takeuchi IK, Ito H, Kamei K. Responses of heat shock proteins hsp27, B-Crystallin and hsp70 in rat brain after kainic acid-induced seizure activity. J Neurochem 1999; 73: 229–236.

    Article  PubMed  CAS  Google Scholar 

  18. Pearce BR, Dutton GR, White FP. Induction of a stress protein in developing cell cultures of the rat cerebellum. J Neurochem 1983; 41: 291–294.

    Article  PubMed  CAS  Google Scholar 

  19. Swanson RA, Sharp FR. Zinc toxicity and induction of the 72 kD heat shock protein in primary astrocyte culture. Glia 1992; 6: 198–205.

    Article  PubMed  CAS  Google Scholar 

  20. Bachelet H, Multhoff G, Vignola M, Himeno K, Polla BS. Heat shock proteins in inflammation and immunity. In: Latchman DS, editor. Stress Proteins. New York: Springer, 1999: 1–7.

    Google Scholar 

  21. Hicky RW, Zhu RL, Alexander HL, et al. 10kD mitochondrial matrix heat shock protein mRNA is induced following global brain ischemia in the rat. Brain Res Mol Brain Res 2000; 169: 169–173.

    Article  Google Scholar 

  22. Fredduzzi S, Tantucci M, Ambrosini MV. Generalized induction of 72-kDa heat-shock protein after transient focal ischemia in rat brain. Exp Brain Res 2001; 136: 19–24.

    Article  PubMed  CAS  Google Scholar 

  23. Allen GV, Chase T. Induction of heat shock proteins and motor deficits after focal cerebellar injury. Neurosci 2001; 102: 603–614.

    Article  CAS  Google Scholar 

  24. Zhou F, Xiang Z, Peiling L, Junjie J, Zhen LX. The expression and changes of heat shock protein 70, MDA and haemorheology in rat cortex after diffuse axonal injury with secondary insults. J Clin Neurosci 2001; 8: 250–252.

    Article  PubMed  CAS  Google Scholar 

  25. Allen GV, Gerami D, Esser MJ. Conditioning effects of repetitive mild neurotrauma on motor function in an animal model of focal brain injury. Neurosci 2000; 99: 93–105.

    Article  CAS  Google Scholar 

  26. Truettner J, Schmidt-Kastner R, Busto R, et al. Expression of brain-derived neurotrophic factor, nerve growth factor, and heat shock protein HSP70 following fluid percussion brain injury in rats. J Neurotrauma 1999; 16: 471–486.

    PubMed  CAS  Google Scholar 

  27. Brosnan CF Heat Shock Proteins and Gamma-delta T Cells. Basel: Karger, 1992.

    Google Scholar 

  28. Sharp FR, Massa SM, Swanson RA. Heat-shock protein protec-tion. Trends Neurosci 1999; 22: 97–99.

    Article  PubMed  CAS  Google Scholar 

  29. Sharp FR. Stress genes protect brain. Ann Neurol 1998; 44: 581–583.

    Article  PubMed  CAS  Google Scholar 

  30. Houk JC. On the role of the cerebellum and basal ganglia in cognitive signal processing. Prog Brain Res 1997; 114: 543–552.

    PubMed  CAS  Google Scholar 

  31. Leggio MG, Molinari M, Neri P, Graziano A, Mandolesi L, Petrosini L. Representation of actions in rats: the role of the cerebellum in learning spatial performances by observation. Proc Natl Acad Sci USA 2000; 97: 2320–2325.

    Article  PubMed  CAS  Google Scholar 

  32. Petrosini L, Leggio MG, Molinari M. The cerebellum in the spatial problem solving: a co-star or a guest-star? Prog Neurobiol 1998; 56: 191–210.

    Article  PubMed  CAS  Google Scholar 

  33. Botez MI, Leveille J, Botez T. Role of the cerebellum in cognitive thought: SPECT and neurological findings. In: Matheson M, Newam H, editors. Rehabilitation: The Path Back. Australian Society for the Study of Brain Improvement. Richmond, Australia, 1989: 179–195.

    Google Scholar 

  34. Parson LM, Fox PT. Sensory and cognitive functions. Int Rev Neurobiol 1997; 41: 255–271.

    Google Scholar 

  35. Kelly PJ, Stein J, Shafqat S, et al. Functional recovery after rehabilitation for cerebellar stroke. Stroke 2001; 32: 530–534.

    PubMed  CAS  Google Scholar 

  36. Levisohn L, Cronin-Golomb A, Schmahmann JD. Neuropsycho-logical consequences of cerebellar tumour resection in children: cerebellar cognitive affective syndrome in a paediatric population. Brain 2000; 123: 1041–1050.

    Article  PubMed  Google Scholar 

  37. Mitoma H, Hayashi R, Yanagisawa N, Tsukagoshi H. Gait disturbances in patients with pontine medial tegmental lesions: clinical characteristics and gait analysis. Arch Neurol 2000; 57: 1048–1057.

    Article  PubMed  CAS  Google Scholar 

  38. Nixon PD, Passingham RE. Predicting sensory events: the role of the cerebellum in motor learning. Exp Brain Res 2001; 138: 251–257.

    Article  PubMed  CAS  Google Scholar 

  39. Fukuda K, Aihara N, Sagar SM, et al. Purkinje cell vulnerability to mild traumatic brain injury. J Neurotrauma 1996; 13: 255–266.

    Article  PubMed  CAS  Google Scholar 

  40. Sato M, Noble LJ. Involvement of the endothelin receptor subtype A in neuronal pathogenesis after traumatic brain injury. Brain Res 1998; 809: 39–49.

    Article  PubMed  CAS  Google Scholar 

  41. Rodella L, Rezzani R, Lanzi R, Bianchi R. Chronic exposure to aluminum decreases NADPH-diaphorase positive neurons in the rat cerebral cortex. Brain Res 2001; 889: 229–233.

    Article  PubMed  CAS  Google Scholar 

  42. Limke TL, Atchison WD. Acute exposure to methylmercury opens the mitochondrial permeability transition pore in rat cerebellar granule cells. Toxicol Appl Pharmacol 2002; 178: 52–61.

    Article  PubMed  CAS  Google Scholar 

  43. Wang X, Shimizu SM, Moskowitz MA, Mewcomb R, Lo EH. Profiles of glutamate and GABA efflux in core versus peripheral zones of focal cerebral ischemia in mice. NeurosciLett 2001; 313: 121–124.

    CAS  Google Scholar 

  44. Yang Y, Li Q, Miyashita H, Yang T, Shuaib A. Different dynamic patterns of extracellular glutamate release in rat hippocampus after permanent or 30-min transient cerebral ischemia and histological correlation. Neuropathology 2001; 21: 181–187.

    Article  PubMed  CAS  Google Scholar 

  45. Hong Z, Xinding Z, Tianlin Z, Liren C. Excitatory amino acids in cerebrospinal fluid of patients with acute head injuries. Clin Chem 2001; 47: 1458–1462.

    CAS  Google Scholar 

  46. Sprang GK, Brown IR. Selective induction of a heat shock gene in fibre tracts and cerebellar neurons of the rabbit brain detected by in situ hybridization. Brain Res 1987; 427: 89–93.

    PubMed  CAS  Google Scholar 

  47. Manzerra P, Brown IR. Time course of induction of a heat shock gene (Hsp70) in the rabbit cerebellum after LSD in vivo: involvement of drug-induced hyperthermia. Neurochem Res 1990; 15: 53–59.

    Article  PubMed  CAS  Google Scholar 

  48. D’Souza CA, Rush SJ, Brown IR. Effect of hyperthermia on the transcription rate of heat shock genes in the rabbit cerebellum and retina assayed by nuclear run-ons. J Neurosci Res 1998; 52: 538–548.

    Article  PubMed  CAS  Google Scholar 

  49. Manzerra P, Rush SJ, Brown IR. Temporal and spatial distribution of heat shock mRNA and protein (hsp70) in the rabbit cerebellum in response to hyperthermia. J Neurosci Res 1993; 36: 480–490.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary V. Allen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reynolds, L.P.R., Allen, G.V. A review of heat shock protein induction following cerebellar injury. Cerebellum 2, 171–177 (2003). https://doi.org/10.1080/14734220310016114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14734220310016114

Keywords

Navigation