Skip to main content

Advertisement

Log in

The central nervous system is a viral reservoir in simian immunodeficiency virus-infected macaques on combined antiretroviral therapy: A model for human immunodeficiency virus patients on highly active antiretroviral therapy

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This study used a simian immunodeficiency virus (SIV)-macaque model to determine whether virus persists in the central nervous system (CNS) of human immunodeficiency virus (HIV)-infected individuals in which plasma viral load has been suppressed by highly active antiretroviral therapy. SIV-infected macaques were treated with two reverse transcriptase inhibitors: PMPA (9-R-(2-phosphonomethoxypropyl)adenine), which does not cross the blood-brain barrier, and FTC (beta-2′,3′-dideoxy-3′-thia-5-fluorocytidine), which does. Viral DNA and RNA were quantitated in the brain after 6 months of suppression of virus replication in blood and cerebrospinal fluid (CSF). Viral DNA was detected in brain from all macaques, including those in which peripheral viral replication had been suppressed either by antiretroviral therapy or host immune responses. Significant neurological lesions were observed only in one untreated macaque that had active virus replication in the CNS. Expression of the inflammatory markers, major histocompatibility complex (MHC) II and CD68 was significantly lower in macaques treated with PMPA/FTC. Thus, although antiretroviral treatment may suppress virus replication in the periphery and the brain and reduce CNS inflammation, viral DNA persists in the brain despite treatment. This suggests that the brain may serve as a long-term viral reservoir in HIV-infected individuals treated with antiretroviral drugs that suppress virus replication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Balzarini J, Naesens L, De Clercq E (1990). Anti-retrovirus activity of 9-(2-phosphonylmethoxyethyl)adenine (PMEA) in vivo increases when it is less frequently administered. Int J Cancer 46: 337–340.

    Article  CAS  PubMed  Google Scholar 

  • Brack-Werner R (1999). Astrocytes: HIV cellular reservoirs and important participants in neuropathogenesis. AIDS 13: 1–22.

    Article  CAS  PubMed  Google Scholar 

  • Chun TW, Carruth L, Finzi D, Shen X, DiGiuseppe JA, Taylor H, Hermankova M, Chadwick K, Margolick J, Quinn TC, Kuo YH, Brookmeyer R, Zeiger MA, Barditch-Crovo P, Siliciano RF (1997a). Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 387: 183–188.

    Article  CAS  PubMed  Google Scholar 

  • Chun TW, Stuyver L, Mizell SB, Ehler LA, Mican JA, Baseler M, Lloyd AL, Nowak MA, Fauci AS (1997b). Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc Natl Acad Sci USA 94: 13193–13197.

    Article  CAS  PubMed  Google Scholar 

  • Cinque P, Bestetti A, Morelli P, Presi S (2000). Molecular analysis of cerebrospinal fluid: potential for the study of HIV-1 infection of the central nervous system. J NeuroVirol 6(Suppl 1): S95-S102.

    CAS  PubMed  Google Scholar 

  • Cinque P, Presi S, Bestetti A, Pierotti C, Racca S, Boeri E, Morelli P, Carrera P, Ferrari M, Lazzarin A (2001). Effect of genotypic resistance on the virological response to highly active antiretroviral therapy in cerebrospinal fluid. AIDS Res Hum Retroviruses 17: 377–383.

    Article  CAS  PubMed  Google Scholar 

  • Clements JE, Babas T, Mankowski JL, Suryanarayana K, Piatak M, Jr., Tarwater PM, Lifson JD, Zink MC (2002). The central nervous system as a reservoir for simian immunodeficiency virus (SIV): steady-state levels of SIV DNA in brain from acute through asymptomatic infection. J Infect Dis 186: 905–913.

    Article  CAS  PubMed  Google Scholar 

  • Crowe SM, McGrath MS, Elbeik T, Kirihara J, Mills J (1989). Comparative assessment of antiretrovirals in human monocyte-macrophages and lymphoid cell lines acutely and chronically infected with the human immunodeficiency virus. J Med Virol 29: 176–180.

    Article  CAS  PubMed  Google Scholar 

  • Crowe SM, Sonza S (2000). HIV-1 can be recovered from a variety of cells including peripheral blood monocytes of patients receiving highly active antiretroviral therapy: a further obstacle to eradication. J Leukoc Biol 68: 345–350.

    CAS  PubMed  Google Scholar 

  • Cserr HF, Knopf PM (1992). Cervical lymphatics, the bloodbrain barrier and the immunoreactivity of the brain: a new view. Immunol Today 13: 507–512.

    Article  CAS  PubMed  Google Scholar 

  • Dore GJ, Correll PK, Li Y, Kaldor JM, Cooper DA, Brew BJ (1999). Changes to AIDS dementia complex in the era of highly active antiretroviral therapy. Aids 13: 1249–1253.

    Article  CAS  PubMed  Google Scholar 

  • Ellis RJ, Gamst AC, Capparelli E, Spector SA, Hsia K, Wolf-son T, Abramson I, Grant I, McCutchan JA (2000). Cerebrospinal fluid HIV RNA originates from both local CNS and systemic sources. Neurology 54: 927–936.

    CAS  PubMed  Google Scholar 

  • Finzi D, Blankson J, Siliciano JD, Margolick JB, Chadwick K, Pierson T, Smith K, Lisziewicz J, Lori F, Flexner C, Quinn TC, Chaisson RE, Rosenberg E, Walker B, Gange S, Gallant J, Siliciano RF (1999). Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. NatMed 5: 512–517.

    CAS  Google Scholar 

  • Finzi D, Hermankova M, Pierson T, Carruth LM, Buck C, Chaisson RE, Quinn TC, Chadwick K, Margolick J, Brookmeyer R, Gallant J, Markowitz M, Ho DD, Richman DD, Siliciano RF (1997). Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 278: 1295–1300.

    Article  CAS  PubMed  Google Scholar 

  • Flaherty MT, Hauer DA, Mankowski JL, Zink MC, Clements JE (1997). Molecular and biological characterization of a neurovirulent molecular clone of SIV. J Virol 71: 5790–5798.

    CAS  PubMed  Google Scholar 

  • Fox HS, Weed MR, Huitron-Resendiz S, Baig J, Horn TF, Dailey PJ, Bischofberger N, Henriksen SJ (2000). Antiviral treatment normalizes neurophysiological but not movement abnormalities in simian immunodeficiency virus-infected monkeys. J Clin Invest 106: 37–45.

    Article  CAS  PubMed  Google Scholar 

  • Furtado MR, Callaway DS, Phair JP, Kunstman KJ, Stanton JL, Macken CA, Perelson AS, Wolinsky SM (1999). Persistence of HIV-1 transcription in peripheral-blood mononuclear cells in patients receiving potent antiretroviral therapy. N Engl J Med 340: 1614–1622.

    Article  CAS  PubMed  Google Scholar 

  • Gisolf EH, Enting RH, Jurriaans S, deWolf F, vanderEnde ME, Hoetelmans RM, Portegies P, Danner SA (2000). Cerebrospinal fluid HIV-1 RNA during treatment with ritonavir/saquinavir or ritonavir/saquinavir/stavudine. AIDS 14: 1583–1589.

    Article  CAS  PubMed  Google Scholar 

  • Glynn SL, Yazdanian M (1998). In vitro blood-brain barrier permeability of nevirapine compared to other HIV antiretroviral agents. J Pharm Sci 87: 306–310.

    Article  CAS  PubMed  Google Scholar 

  • Gray F, Chretien F, Vallat-Decouvelaere AV, Scaravilli F (2003). The changing pattern of HIV neuropathology in the HAART era. J Neuropathol Exp Neurol 62: 429–440.

    PubMed  Google Scholar 

  • Hickey WF (2001). Basic principles of immunological surveillance of the normal central nervous system. Glia 36: 118–124.

    Article  CAS  PubMed  Google Scholar 

  • Hirsch VM, Fuerst TR, Sutter G, Carroll MW, Yang LC, Goldstein S, Piatak M, Elkins WR, Alvord WG, Montefiori DC, Moss B, Lifson JD (1996). Patterns of viral replication correlate with outcome in simian immunodeficiency virus (SIV)-infected macaques: effect of prior immunization with a trivalent SIV vaccine in modified vaccinia virus Ankara. J Virol 70: 3741–3752.

    CAS  PubMed  Google Scholar 

  • Jellinger KA, Setinek U, Drlicek M, Bohm G, Steurer A, Lintner F (2000). Neuropathology and general autopsy findings in AIDS during the last 15 years. Acta Neuropathol (Berl) 100: 213–220.

    Article  CAS  Google Scholar 

  • Kelder W, McArthur JC, Nance-Sproson T, McClernon D, Griffin DE (1998). B-chemokines MCP-1 and RANTES are selectively increased in cerebrospinal fluid of patients with human immunodeficiency virus-associated dementia. Ann Neurol 44: 831–835.

    Article  CAS  PubMed  Google Scholar 

  • Kim RB, Fromm MF, Wandel C, Leake B, Wood AJ, Roden DM, Wilkinson GR (1998). The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J Clin Invest 101: 289–294.

    Article  CAS  PubMed  Google Scholar 

  • Lambotte O, Taoufik Y, de Goer MG, Wallon C, Goujard C, Delfraissy JF (2000). Detection of infectious HIV in circulating monocytes from patients on prolonged highly active antiretroviral therapy. J Acquir Immune Defic Syndr 23: 114–119.

    CAS  PubMed  Google Scholar 

  • Langford TD, Letendre SL, Larrea GJ, Masliah E (2003). Changing patterns in the neuropathogenesis of HIV during the HAART era. Brain Pathol 13: 195–210.

    Article  CAS  PubMed  Google Scholar 

  • Mankowski JL, Clements JE, Zink MC (2002). Searching for clues: tracking the pathogenesis of human immunodeficiency virus central nervous system disease by use of an accelerated, consistent simian immunodeficiency virus macaque model. J Infect Dis 186(Suppl 2): S199-S208.

    Article  PubMed  Google Scholar 

  • Mankowski JL, Flaherty MT, Spelman JP, Hauer DA, Didier PJ, Martin Amedee A, Murphey-Corb M, Kirstein LM, Munoz A, Clements JE, Zink MC (1997). Pathogenesis of simian immunodeficiency virus encephalitis: Viral determinants of neurovirulence. J Virol 71: 6055–6060.

    CAS  PubMed  Google Scholar 

  • Masliah E, DeTeresa RM, Mallory ME, Hansen LA (2000). Changes in pathological findings at autopsy in AIDS cases for the last 15 years. AIDS 14: 69–74.

    Article  CAS  PubMed  Google Scholar 

  • Neuenburg JK, Brodt HR, Herndier BG, Bickel M, Bacchetti P, Price RW, Grant RM, Schlote W (2002). HIV-related neuropathology, 1985 to 1999: rising prevalence of HIV encephalopathy in the era of highly active antiretroviral therapy. J Acquir Immune Defic Syndr 31: 171–177.

    PubMed  Google Scholar 

  • Perno CF, Aquaro S, Rosenwirth B, Balestra E, Peichl P, Billich A, Villani N, Calio R (1994). In vitro activity of inhibitors of late stages of the replication of HIV in chronically infected macrophages. J Leukoc Biol 56: 381–386.

    CAS  PubMed  Google Scholar 

  • Perno CF, Newcomb FM, Davis DA, Aquaro S, Humphrey RW, Calio R, Yarchoan R (1998). Relative potency of protease inhibitors in monocytes/macrophages acutely and chronically infected with human immunodeficiency virus. J Infect Dis 178: 413–422.

    CAS  PubMed  Google Scholar 

  • Ranki A, Lagerstedt A, Ovod V, Aavik E, Krohn KJE (1994). Expression kinetics and subcellular localization of HIV-1 regulatory proteins Nef, Tat and Rev in acutely and chronically infected lymphoid cell lines. Arch Virol 139: 365–378.

    Article  CAS  PubMed  Google Scholar 

  • Saito Y, Sharer LR, Epstein LG, Michaels J, Mintz M, Louder M, Golding K, Cvetkovich TA, Blumberg BM (1994). Overexpressionof nef as a marker for restricted HIV-1 infection of astrocytes in postmortem pediatric central nervous system. Neurology 44: 474–481.

    CAS  PubMed  Google Scholar 

  • Sawchuk RJ, Yang Z (1999). Investigation of distribution, transport and uptake of anti-HIV drugs to the central nervous system. Adv Drug Deliv Rev 39: 5–31.

    Article  CAS  PubMed  Google Scholar 

  • Schinazi RF, Boudinot FD, Ibrahim SS, Manning C, McClure HM, Liotta DC (1992). Pharmacokinetics and metabolism of racemic 2′,3′-dideoxy-5-fluoro-3′-thiacytidine in rhesus monkeys. Antimicrob Agents Chemother 36: 2432–2438.

    CAS  PubMed  Google Scholar 

  • Shen A, Zink MC, Mankowski JL, Chadwick K, Margolick JB, Carruth LM, Li M, Clements JE, Siliciano RF (2003). Resting CD4(+) T Lymphocytes but not thymocytes provide a latent viral reservoir in a simian immunodeficiency virus-macaca nemestrina model of human immunodeficiency virus type 1-infected patients on highly active antiretroviral therapy. J Virol 77: 4938–4949.

    Article  CAS  PubMed  Google Scholar 

  • Sonza S, Crowe SM (2001). Reservoirs for HIV infection and their persistence in the face of undetectable viral load. AIDS Patient Care STDS 15: 511–518.

    Article  CAS  PubMed  Google Scholar 

  • Sonza S, Mutimer HP, Oelrichs R, Jardine D, Harvey K, Dunne A, Purcell DF, Birch C, Crowe SM (2001). Monocytes harbour replication-competent, non-latent HIV-1 in patients on highly active antiretroviral therapy. AIDS 15: 17–22.

    Article  CAS  PubMed  Google Scholar 

  • Staprans S, Marlowe N, Glidden D, Novakovic-Agopian T, Grant RM, Heyes M, Aweeka F, Deeks S, Price RW (1999). Time course of cerebrospinal fluid responses to antiretroviral therapy: evidence for variable compartmentalization of infection. AIDS 13: 1051–1061.

    Article  CAS  PubMed  Google Scholar 

  • Suryanarayana K, Wiltrout TA, Vasquez GM, Hirsch VM, Lifson JD (1998). Plasma SIV RNA viral load determination by real-time quantification of product generation in reverse transcriptase-polymerase chain reaction. AIDS Res Hum Retroviruses 14: 183–189.

    Article  CAS  PubMed  Google Scholar 

  • Tornatore C, Chandra R, Berger JR, Major EO (1994). HIV-1 infection of subcortical astrocytes in the pediatric central nervous system. Neurology 44: 481–487.

    CAS  PubMed  Google Scholar 

  • Wong JK, Hezareh M, Gunthard HF, Havlir DV, Ignacio CC, Spina CA, Richman DD (1997). Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science 278: 1291–1295.

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Ramratnam B, Tenner-Racz K, He Y, Vesanen M, Lewin S, Talal A, Racz P, Perelson AS, Korber BT, Markowitz M, Ho DD (1999). Quantifying residual HIV-1 replication in patients receiving combination antiretroviral therapy. N Engl J Med 340: 1605–1613.

    Article  CAS  PubMed  Google Scholar 

  • Zhu T, Muthui D, Holte S, Nickle D, Feng F, Brodie S, Hwangbo Y, Mullins JI, Corey L (2002). Evidence for human immunodeficiency virus type 1 replication in vivo in CD14(+) monocytes and its potential role as a source of virus in patients on highly active antiretroviral therapy. J Virol 76: 707–716.

    Article  CAS  PubMed  Google Scholar 

  • Zink MC, Clements JE (2002). A novel simian immunodeficiency virus model that provides insight into mechanisms of human immunodeficiency virus central nervous system disease. J NeuroVirol 8(Suppl 2): 42–48.

    Article  CAS  PubMed  Google Scholar 

  • Zink MC, Coleman GD, Mankowski JL, Adams RJ, Tarwater PM, Fox K, Clements JE (2001). Increased macrophage chemoattractant protein-1 in cerebrospinal fluid precedes and predicts simian immunodeficiency virus encephalitis. J Infect Dis 184: 1015–1021.

    Article  CAS  PubMed  Google Scholar 

  • Zink MC, Suryanarayana K, Mankowski JL, Shen A, Piatak J, Spelman JP, Carter DL, Adams RJ, Lifson JD, Clements JE (1999). High viral load in the cerebrospinal fluid and brain correlates with severity of simian immunodeficiency virus encephalitis. J Virol 73: 10480–10488.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janice E. Clements.

Additional information

This work was supported by grants to JEC (MH07036, NS047984) and MCZ (NS44815, MH069116).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clements, J.E., Li, M., Gama, L. et al. The central nervous system is a viral reservoir in simian immunodeficiency virus-infected macaques on combined antiretroviral therapy: A model for human immunodeficiency virus patients on highly active antiretroviral therapy. Journal of NeuroVirology 11, 180–189 (2005). https://doi.org/10.1080/13550280590922748-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/13550280590922748-1

Keywords

Navigation