Skip to main content
Log in

The biochemical basis of Parkinson's disease: The role of catecholamineo-quinones: A review-discussion

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

This paper reviews the possible role of catecholamineo-quinones (OQs) in the genesis of Parkinson's disease (PD). This disease is characterized by damage caused to the pigmented catecholaminergic cells in various areas of the brain. The pigment involved is neuromelanin that is the end product of catecholamine oxidation by theo-quinone route. Evidence is presented regarding the overproduction in PD of these catecholamine OQs that damage the electron chain in the mitochondria leading to cell death. The roles of glutathione S-transferase and reactive oxygen species in this are also surveyed. A review of all known biochemical properties of theseo-quinones is included. The hypothesis is put forward that an important factor in the genesis of PD may be the overload by environmental toxins of enzymes such as glutathioneS-transferase that also detoxify catecholamine OQs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACh:

Acetylcholine

AChe:

Acetylcholine esterase

ATP:

Adenosine triphosphate

CAT:

Catalase

DA:

Dopamine

DAQs:

Dopamineo-quinones

GSH:

Glutathione

GSHpx:

Glutathione peroxidase

GSSG:

Oxidized glutathione

HO-1:

Hemeoxygenase-1

LC:

Locus coeruleus

MTP:

Mitochondrial transition pore

OQs:

o-quinones

PD:

Parkinson's disease

PGH:

Prostaglandin H

NADH:

Nicotine adenine dinucleotide

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

SNpc:

Substantia nigra pars compacta

TNF:

Tumor necrosis factor

VTA:

Ventral tegmental area

References

  • Baez, S., Segura-Aguilar, J., Widersten, M., Johansson, A.S. and Mannervik, B. (1997) “Glutathione transferases catalyze the detoxification of oxidized metabolites (OQs) of catecholamines and may serve as an antioxidant system preventing degenerative cellular processes”Biochem. J. 324, 25–28.

    PubMed  CAS  Google Scholar 

  • Barzilai, A., Zilkha-Falb, R., Daily, D., Stern, N., Offen, D., Ziv, I., Melamed, E. and Shirvan, A. (2000) “The molecular mechanism of dopamine-induced apoptosis: identification and characterization of genes that mediate dopamine toxicity.”,J. Neural. Trans. Supp.,60, 59–76.

    Google Scholar 

  • Basma, A.N., Morris, E.J., Nicklas, W.J. and Geller, H.M. (1995) “l-DOPA cytotoxicity to PC12 cells in culture is via its autooxidation”,J. Neurochem. 64, 825–832.

    PubMed  CAS  Google Scholar 

  • Ben-Schachar, D., Zuk, R. and Glinka, Y. (1995) “Dopamine neurotoxicity: inhibition of mitochondrial respiraton”,J. Neurochem. 64, 718–723.

    Google Scholar 

  • Berman, S.D. and Hastings, T.G. (1997) “Inhibition of glutamate transport in synaptosomes by dopamine oxidation and reactive oxygen species”,J. Neurochem. 69, 1185–1195.

    PubMed  CAS  Google Scholar 

  • Berman, S.D. and Hastings, T.G. (1999) “Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: implications for Parkinson's disease”,J. Neurochem. 73, 1127–1137.

    Article  PubMed  CAS  Google Scholar 

  • Cassarino, D.S., Parks, J.K., Parker, W.D.J. and Bennett, Jr, J.P. (1999) “The parkinsonian neurotoxin MPP+ opens the mitochondrial pore and releases cytochrome c in isolated mitochondria via an oxidative mechanism”,Biochem. Biophys. Acta 1453, 49–62.

    PubMed  CAS  Google Scholar 

  • De Iuliis, A., Burlina, A.P., Zanatta, L., Boschetto, R., Zambenedetti, P. and Galzigna, L. (2002) “Increased dopamine peroxidation in post-mortem Parkinsonian brains,” Submitted for publication.

  • Drukarch, B., Langeveld, C.H. and Stoof, J.C. (1999) “Glutathione homeostasis linked to the vesicular storage of dopamine in rat PC12 pheochromocytoma cells”,Exp. Neurol. 145, S39.

    Google Scholar 

  • Fornstedt, B., Brun, A., Rosengren, E. and Carlsson, A. (1989) “The apparent autooxidation rate of catechols in dopamine-rich regions of human brains increases with the degree of depigmentation of substantia nigra”,J. Neural. Transm. 1, 279–295.

    Article  CAS  Google Scholar 

  • Gai, W.P., Geffen, L.B., Denoroy, L. and Blessing, W.W. (1993) Loss of C1 and C3 epinephrine-synthesizing neurons in the medulla oblongata in Parkinson's disease,Ann. Neurol. 33, 357–367.

    Article  PubMed  CAS  Google Scholar 

  • Galzigna, L., Schiappelli, M.P., Rigo, A. and Scarpa, M. (1999) “A rat brain fraction and different purified peroxidases catalyzing the formation of dopaminochrome from dopamine”,Biochem. Biophys. Acta 1427, 329–336.

    PubMed  CAS  Google Scholar 

  • Galzigna, L., De Iuliis, A. and Zanatta, L. (2000) “Enzymatic dopamine peroxidation in substantia nigra of human brain”,Clin. Chim. Acta 300, 131–138.

    Article  PubMed  CAS  Google Scholar 

  • Hastings, T.G. (1995) “Enzymatic oxidation of dopamine: the role of prostaglandin H synthase”,J. Neurochem. 64, 919–924.

    PubMed  CAS  Google Scholar 

  • Jenner, P. and Olanow, C.W. (1998) “Understanding cell death in Parkinson's disease”,Ann. Neurol. 44(S1), S77-S84.

    Google Scholar 

  • Jenner, P., Dexter, D.T., Sian, J., Schapira, A.H.V. and Marsden, C. (1992) “Oxidative stress as a cause of nigral cell death in Parkinson's disease and incidental Lewy body disease”,Ann. Neurol. 32, S82-S88.

    Article  PubMed  CAS  Google Scholar 

  • Jimenez del Rio, M., Pardo, C.V., Pinxteren, J., de Potter, W., Ebinger, G. and Vauquelin, G. (1994) “Interaction of serotonin-and dopamine-related neurotoxins with “serotonin binding proteins” in bovine frontal cortex”,Biochem. Pharmacol. 48, 253–258.

    PubMed  CAS  Google Scholar 

  • Kawamata, H., McLean, P.J., Sharma, N. and Hyman, B.T. (2001) “Interaction of alpha-synuclein and synphilin-1: effect of Parkinson's disease-associated mutations”,J. Neurochem. 77, 929–934.

    Article  PubMed  CAS  Google Scholar 

  • Klegeris, A., Korkina, L.G. and Greenfield, S.A. (1995) “A possible interaction between acetylcholinesterase and dopamine molecules during oxidation of the amine”.Free Rad. Biol. Med. 18, 223–230.

    Article  PubMed  CAS  Google Scholar 

  • Kuhn, D.M. and Arthur, Jr, R. (1988) “Dopamine inactivates tryptophan hydroxylase and forms a redox-cycling quinoprotein: possible endogenous toxin to serotonin neurons”,J. Neurosci. 18, 7111–7117.

    Google Scholar 

  • Lancelot, E., Callebert, J., Plotkine, M. and Boulu, R.G. (1995) “Striatal dopamine participates in glutamate-induced hydroxyl radical generation”,NeuroReport 6, 1033–1036.

    Article  PubMed  CAS  Google Scholar 

  • Lereugle, B., Faucheux, B.A., Bouras, C., Nillesse, N., Spik, G., Hirsch, E.C., Agid, Y. and Hof, P.R. (1996) “Cellular distribution of iron-binding protein lactotransferrin in the mesencephlon of Parkinson's disease cases”,Arch. Neuropathol. 91, 566–572.

    Article  Google Scholar 

  • Luo, T., Hattori, A., Munoz, J., Qin, Z.-H. and Roth, G.S. (1995) “Intrastriatal dopamine injection induces apoptosis through oxidation-involved activation of transcription factors AP-1 and NF-κB in rats”,Mol. Pharmacol. 56, 254–264.

    Google Scholar 

  • Marstein, S., Jellum, E., Nesbakken, R. and Perry, T.L. (1981) “Biochemical investigations of biopsied brain tissue and autopsied organs from patients with pyroglutamic acidemia (5-oxoprolinemia)”,Clin. Chim. Acta 111, 219–222.

    Article  PubMed  CAS  Google Scholar 

  • Mattammal, M.B., Strong, R., Lakshuri, V.M., Chung, H.D. and Stephenson, A.H. (1995) “Prostaglandin H synthetase-mediated metabolism of dopamine; implication for Parkinson's disease”,J. Neurochem. 64, 1645–1654.

    Article  PubMed  CAS  Google Scholar 

  • McGuire, S.O., Ling, Z.D., Lipton, J.W., Sortwell, C.E., Collier, T.J. and Carvey, P.M. (2001) “Tumor necrosis factor alpha is toxic to embryonic mesencephalic neurons”,Exp. Neurol. 169, 219–230.

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin, B.A., Nelson, D., Erecinska, M. and Chesselet, M.-F. (1998) “Toxicity of dopamine to striatal neuronsin vitro and potentiation of cell death by a mitochondrial inhibition”,J. Neurochem. 70, 2406–2411.

    Article  PubMed  CAS  Google Scholar 

  • Merad-Boudia, M., Nicole, A., Santiard-Baron, D., Saillé, C. and Ceballos-Picot, I. (1998) “Mitochondrial impairment as an early event in the process of apoptosis induced by glutathione depletion in neuronal cells: relevance to Parkinson's disease”,Biochem. Pharmacol. 56, 645–655.

    Article  PubMed  CAS  Google Scholar 

  • Mirza, B., Hadberg, H., Thomsen, P. and Moos, T. (2000) The absence of reactive astiocytosis is indicative of a unique inflammatory process in Parkinson's disease.Neuroscience 95, 425–439.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, K., Wang, W. and Kang, W.J. (1997) “The role of glutathione in dopaminergic neuronal survival”,J. Neurochem. 69, 1850–1858.

    Article  PubMed  CAS  Google Scholar 

  • Rowe, D.B., Le, U., Smith, R.G. and Appel, S.H. (1998) “Antibodies from patients with Parkinson's disease react with protein modified by dopamine oxidation”,J. Neurosci. Res. 53, 551–558.

    Article  PubMed  CAS  Google Scholar 

  • Schapira, A.H.V., Mann, V.M., Cooper, J.M., Krige, D., Jenner, P.J. and Marsden, C.D. (1992) “Mitochondrial function in Parkinson's disease”,Ann. Neurol. 32, S116-S124.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, J., Mertz, K. and Morgan, J.I. (1999) “Regulation of heme oxygenase-1 expression by dopamine in cultures C6 glioma and primary astrocytes”,Mol. Brain Res. 73, 50–59.

    Article  PubMed  CAS  Google Scholar 

  • Segura-Aguilar, J. (1996) “Peroxidase activity of liver microsomal vitamin D 25-hydroxylase and cytochrome P450 1A2 catalyzes 25-hydroxylation of vitamin D3 and oxidation of dopamine to aminochrome”,Biochem. Mol. Med. 58, 122–129.

    Article  PubMed  CAS  Google Scholar 

  • Shen, X.-M. and Dryhurst, G. (1996) “Oxidation chemistry of (−)-norepinephrine in the presence ofl-cysteine”,J. Med. Chem. 39, 2018–2029.

    Article  PubMed  CAS  Google Scholar 

  • Shen, X.-M., Xia, B., Wrona, M.Z. and Dryhurst, G. (1996) “Synthesis, redox properties,in vivo formation, and neurobehavioral effects ofN-acetylcysteinyl conjugates of dopamine: possible metabolites of relevance to Parkinson's disease”,Chem. Res. Toxicol. 9, 1117–1126.

    Article  PubMed  CAS  Google Scholar 

  • Skellerud, K., Marstein, S., Schrader, H., Brundelet, P.J. and Jellum, E. (1980) “The cerebral lesions in a patient with generalized glutathione deficiency and pyroglutamic aciduria (5-oxoprolinemia)”,Acta Neuropath. 52, 219–225.

    Google Scholar 

  • Smythies, J. The Dynamic Neuron. Cambridge, MA. MIT Press (2002).

    Google Scholar 

  • Spencer, J.P.E., Jenner, P., Daniel, S.E., Lees, A.J., Marsden, D.C. and Halliwell, B. (1998) “Conjugates of catecholamines with cysteine and GSH in Parkinson's disease; possible mechanisms of formation involving reactive oxygen species”,J. Neurochem. 71, 2112–2122.

    PubMed  CAS  Google Scholar 

  • Terland, O., Flatmark, T., Tangeras, A. and Grønberg, M. (1997) “Dopamine oxidation generates an oxidative stress mediated by dopamine semiquinone and unrelated to reactive oxygen species”,J. Mol. Cell. Cardiol. 29, 1731–1738.

    Article  PubMed  CAS  Google Scholar 

  • Tief, K., Hahne, M., Schmidt, A. and Beerman, F. (1996) “Tyrosinase, the key enzyme in melanin synthesis, is expressed in murine brain”,Eur. J. Biochem. 241, 12–16.

    Article  PubMed  CAS  Google Scholar 

  • Watts, P.M., Riedl, A.G., Douek, D.C., Edwards, R.J., Boobis, A.R., Jenner, P. and Marsden, C.D. (1998) “Co-localization of P450 enzymes in the rat substantia nigra with tyrosine hydroxylase”,Neuroscience 86, 511–519.

    Article  PubMed  CAS  Google Scholar 

  • Xu, Y., Stokes, A.H., Roskoski, Jr, R. and Vrana, K.E. (1998) “Dopamine, in the presence of tyrosinase, covalently modifies and inactivates tyrosine hydroxylase”,J. Neurosci. Res. 54, 691–697.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, F. and Dryhurst, G. (1994) “Effects ofl-cysteine on the oxidation chemistry of dopamine: new reaction pathways of potentiarelevance to idopathic Parkinson's disease”,J. Med. Chem. 37, 1084–1098.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J., Price, J.O., Graham, D.G. and Montini, T.J. (1998) “Secondary excitotoxicity contributes to dopamine-induced apoptosis of dopaminergic neuronal cultures”,Biochem. Biophys. Res. Comm. 248, 812–816.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Smythies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smythies, J., De Iuliis, A., Zanatta, L. et al. The biochemical basis of Parkinson's disease: The role of catecholamineo-quinones: A review-discussion. neurotox res 4, 77–81 (2002). https://doi.org/10.1080/10298420290007655

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/10298420290007655

Keywords

Navigation