Journal of NeuroVirology

, Volume 12, Issue 2, pp 100–107

Relationship of antiretroviral treatment to postmortem brain tissue viral load in human immunodeficiency virus-infected patients

Authors

    • Department of Pathology, School of MedicineUniversity of California San Diego
  • Jennifer Marquie-Beck
    • Department of NeurosciencesUniversity of California, San Diego
  • Sergio de Almeida
    • Department of NeurosciencesUniversity of California, San Diego
  • Deborah Lazzaretto
    • Department of PsychiatryUniversity of California, San Diego
  • Scott Letendre
    • Department of MedicineUniversity of California, San Diego
  • Igor Grant
    • Department of PsychiatryUniversity of California, San Diego
  • J. Allen McCutchan
    • Department of MedicineUniversity of California, San Diego
  • Eliezer Masliah
    • Department of Pathology, School of MedicineUniversity of California San Diego
    • Department of NeurosciencesUniversity of California, San Diego
  • Ronald J. Ellis
    • Department of NeurosciencesUniversity of California, San Diego
  • the HIV Neurobehavioral Research Center (HNRC) group
Article

DOI: 10.1080/13550280600713932

Cite this article as:
Langford, D., Marquie-Beck, J., de Almeida, S. et al. Journal of NeuroVirology (2006) 12: 100. doi:10.1080/13550280600713932
  • 100 Views

Abstract

Human immunodeficiency virus (HIV)-1 invades the central nervous system (CNS) soon after infection and is partially protected there from host immunity and antiretroviral drugs (ARVs). Sanctuary from highly active antiretroviral therapy (HAART) in the CNS could result in ongoing viral replication, promoting the development of drug resistance and neurological disease. Despite the importance of these risks, no previous study has directly assessed HAART’s effects on brain tissue viral load (VL). The authors evaluated 61 HIV-infected individuals for whom both histories of HAART treatment and postmortem brain tissue VL measurements were available. Two groups were defined based on HAART use in the 3 months prior to death: HAART(+) subjects had received HAART, and HAART(−) subjects had not received HAART. HIV RNA was quantified in postmortem brain tissue (log10 copies/10 μg total tissue RNA) and antemortem plasma (log10 copies/ml) by reverse transcriptase—polymerase chain reaction (RT-PCR). Brain tissue VLs were significantly lower among HAART(+) subjects compared to HAART(−) subjects (median 2.6 versus 4.1; P = .0007). These findings suggest that despite the limited CNS penetration of many antiretroviral medications, HAART is at least partially effective in suppressing CNS viral replication. Because some HAART regimens may be better than others in this regard, regimen selection strategies could be used to impede CNS viral activity, limit neuronal dysfunction, and prevent or treat clinical neurocognitive disorders in HIV-infected patients. Furthermore, such strategies might help to prevent the development of ARV resistance.

Keywords

antiretroviral therapybrainCNSdementiaHIV
Download to read the full article text

Copyright information

© Journal of NeuroVirology, Inc. 2006