Skip to main content

Advertisement

Log in

Viruses can silently prime for and trigger central nervous system autoimmune disease

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

Although many viruses have been isolated from patients with multiple sclerosis (MS), as yet, no one agent has been demonstrated to cause MS. In contrast, epidemiological data indicate that viral infections are associated with exacerbations of MS. Here, we present data showing that virus infections can subclinically prime animals for central nervous system (CNS) autoimmune disease; long after the original infection has been eradicated, a nonspecific challenge/infection can trigger an exacerbation. The priming infectious agent must show molecular mimicry with self-CNS antigens such as glial fibrillary acidic protein (GFAP), myelin associated glycoprotein (MAG) or myelin proteolipid protein (PLP). The subsequent challenge, however, may be nonspecific; complete Freund’s adjuvant (CFA), or infection with a recombinant vaccinia virus encoding an irrelevant protein, could trigger CNS disease. In the CNS, we could detect a mononuclear cell infiltration, but no demyelination was found. However, if the pathogenesis of MS is similar to that of this novel animal model for CNS autoimmune disease, our findings could help explain why exacerbations of MS are often associated with a variety of different viral infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alter M, Okihiro M, Rowley W, Morris T (1971). Multiple sclerosis among Orientals and Caucasians in Hawaii. Neurology 21: 122–130.

    CAS  PubMed  Google Scholar 

  • Alter M, Zhang ZX, Davanipour Z, Sobel E, Zibulewski J, Schwartz G, Friday G (1986). Multiple sclerosis and childhood infections. Neurology 36: 1386–1389.

    CAS  PubMed  Google Scholar 

  • Amor S, Groome N, Linington C, Morris MM, Dornmair K, Gardinier MV, Matthieu J-M, Baker D (1994). Identification of epitopes of myelin oligodendrocyte glycoprotein for the induction of experimental allergic encephalomyelitis in SJL and Biozzi AB/H mice. J Immunol 153: 4349–4356.

    CAS  PubMed  Google Scholar 

  • Andersen O, Lygner P-E, Bergström T, Andersson M, Vahlne A (1993). Viral infections trigger multiple scle rosis relapses: a prospective seroepidemiological study. J Neurol 240: 417–422.

    Article  CAS  PubMed  Google Scholar 

  • Anderson DW, Ellenberg JH, Leventhal CM, Reingold SC, Rodriguez M, Silberberg DH (1992). Revised estimate of the prevalence of multiple sclerosis in the United States. Ann Neurol 31: 333–336.

    Article  CAS  PubMed  Google Scholar 

  • Baker D, Rosenwasser OA, O’Neill JK, Turk JL (1995). Genetic analysis of experimental allergic encephalomyelitis in mice. J Immunol 155: 4046–4051.

    CAS  PubMed  Google Scholar 

  • Barnett LA, Whitton JL, Wada Y, Fujinami RS (1993). Enhancement of autoimmune disease using recombinant vaccinia virus encoding myelin proteolipid protein [published erratum appears in J Neuroimmunol 1993;48:120]. J Neuroimmunol 44: 15–25.

    Article  CAS  PubMed  Google Scholar 

  • Berger T, Weerth S, Kojima K, Linington C, Wekerle H, Lassmann H (1997). Experimental autoimmune encephalomyelitis: the antigen specificity of T lymphocytes determines the topography of lesions in the central and peripheral nervous system. Lab Invest 76: 355–364.

    CAS  PubMed  Google Scholar 

  • Butterfield RJ, Blankenhorn EP, Roper RJ, Zachary JF, Doerge RW, Sudweeks J, Rose J, Teuscher C (1999). Genetic analysis of disease subtypes and sexual dimorphisms in mouse experimental allergic encephalomyelitis (EAE): Relapsing/remitting and monophasic remitting/nonrelapsing EAE are immunogenetically distinct. J Immunol 162: 3096–3102.

    CAS  PubMed  Google Scholar 

  • Butterfield RJ, Sudweeks JD, Blankenhorn EP, Korngold R, Marini JC, Todd JA, Roper RJ, Teuscher C (1998). New genetic loci that control susceptibility and symptoms of experimental allergic encephalomyelitis in inbred mice. J Immunol 161: 1860–1867.

    CAS  PubMed  Google Scholar 

  • Charles PC, Weber KS, Cipriani B, Brosnan CF (1999). Cytokine, chemokine and chemokine receptor mRNA expression in different strains of normal mice: implications for establishment of a Th1/Th2 bias. J Neuroimmunol 100: 64–73.

    Article  CAS  PubMed  Google Scholar 

  • Dean G, Kurtzke JF (1971). On the risk of multiple sclerosis according to age at immigration to South Africa. Br Med J 3: 725–729.

    Article  CAS  PubMed  Google Scholar 

  • Edwards S, Zvartau M, Clarke H, Irving W, Blumhardt LD (1998). Clinical relapses and disease activity on magnetic resonance imaging associated with viral upper respiratory tract infections in multiple sclerosis. J Neurol Neurosurg Psychiatry 64: 736–741.

    Article  CAS  PubMed  Google Scholar 

  • Encinas JA, Lees MB, Sobel RA, Symonowicz C, Greer JM, Shovlin CL, Weiner HL, Seidman CE, Seidman JG, Kuchroo VK (1996). Genetic analysis of susceptibility to experimental autoimmune encephalomyelitis in a cross between SJL/J and B10.S mice. J Immunol 157: 2186–2192.

    CAS  PubMed  Google Scholar 

  • Freund J, Stern ER, Pisani TM (1947). Isoallergic encephalomyelitis and radiculitis in guinea pigs after one injection of brain and mycobacteriain water-in-oil emulsion. J Immunol 57: 179–193.

    CAS  PubMed  Google Scholar 

  • Fujinami RS, Oldstone MBA (1985). Amino acid homology between the encephalitogenic site of myelin basic protein and virus: mechanism for autoimmunity. Science 230: 1043–1045.

    Article  CAS  PubMed  Google Scholar 

  • Goverman J (1999). Tolerance and autoimmunity in TCR transgenic mice specific for myelin basic protein. Immunol Rev 169: 147–159.

    Article  CAS  PubMed  Google Scholar 

  • Illés Z, Kondo T, Yokoyama K, Ohashi T, Tabira T, Yamamura T (1999). Identification of autoimmune T cells among in vivo expanded CD25+ T cells in multiple sclerosis. J Immunol 162: 1811–1817.

    PubMed  Google Scholar 

  • James WH (1988). Further evidence in support of the hypothesis that one cause of multiple sclerosis is childhood infection. Neuroepidemiology 7: 130–133.

    Article  CAS  PubMed  Google Scholar 

  • Kabat EA, Wolf A, Bezer AE (1946). Rapid production of acute disseminated encephalomyelitis in Rhesus monkeys by infection of brain tissue with adjuvants. Science 104: 362–363.

    Article  Google Scholar 

  • Kabat EA, Wolf A, Bezer AE (1947). The rapid production of acute disseminated encephalomyelitis in Rhesus monkeys by infection of heterologous and homologous brain tissue with adjuvants. J Exp Med 85: 117–128.

    Article  CAS  PubMed  Google Scholar 

  • Kaiman B, Lublin FD (1999). The genetics of multiple sclerosis. A review. Biomed Pharmacother 53: 358–370.

    Article  Google Scholar 

  • Kerlero de Rosbo N, Bernard CCA, Simmons RD, Carnegie PR (1985). Concomitant detection of changes in myelin basic protein and permeability of blood—spinal cord barrier in acute experimental autoimmune encephalomyelitis by electroimmunoblotting. J Neuroimmunol 9: 349–361.

    Article  CAS  PubMed  Google Scholar 

  • Kopeloff LM, Kopeloff N (1947). Neurologic manifestations in laboratory animals produced by organ (adjuvant) emulsions. J Immunol 57: 229–237.

    CAS  PubMed  Google Scholar 

  • Kurtzke JF (1993). Epidemiologic evidence for multiple sclerosis as an infection. Clin Microbiol Rev 6: 382–427.

    CAS  PubMed  Google Scholar 

  • Levine S, Simon J, Wenk EJ (1966). Edema of the spinal cord in experimental allergic encephalomyelitis. Proc Soc Exp Biol Med 123: 539–541.

    CAS  PubMed  Google Scholar 

  • Livingstone KD, Sudweeks JD, Blankenhorn EP, Hickey WF, Teuscher C (1995). Susceptibility to actively-induced murine experimental allergic encephalomyelitis is not linked to genes of the T cell receptor or CD3 complexes. Autoimmunity 21: 195–201.

    Article  CAS  PubMed  Google Scholar 

  • Martin R (1997). Genetics of multiple sclerosis—how could disease-associated HLA-types contribute to pathogenesis? J Neural Transm Suppl 49: 177–194.

    CAS  PubMed  Google Scholar 

  • Metz LM, McGuinness SD, Harris C (1998). Urinary tract infections may triggerrelapse in multiple sclerosis. Axone 19: 67–70.

    CAS  PubMed  Google Scholar 

  • Morgan IM (1946). Allergic encephalomyelitis in monkeys in response to injection of normal monkey cord. J Bacteriology 51: 614.

    CAS  Google Scholar 

  • Morgan IM (1947). Allergic encephalomyelitis in monkeys in response to injection of normal monkey nervous tissue. J Exp Med 85: 131–140.

    Article  CAS  PubMed  Google Scholar 

  • Morrison LA (1947). Disseminated encephalomyelitis experimentally produced by the use of homologous antigen. Arch Neurol & Psychiat 58: 391–416.

    CAS  Google Scholar 

  • Morrison W, Nelson J (1994). Environmental triggers in multiple sclerosis. Fact or fallacy? Axone 16: 23–26.

    CAS  PubMed  Google Scholar 

  • Panitch HS (1994). Influence of infection on exacerbations of multiple sclerosis. Ann Neurol 36 Suppl: S25–S28.

    Google Scholar 

  • Rapp NS, Gilroy J, Lerner AM (1995). Role of bacterial infection in exacerbation of multiple sclerosis. Am J Phys Med Rehabil 74: 415–418.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez F, An LL, Harkins S, Zhang J, Yokoyama M, Widera G, Fuller JT, Kincaid C, Campbell IL, Whitton JL (1998). DNA immunization with minigenes: low frequency of memory cytotoxic T lymphocytes and inefficient antiviral protection are rectified by ubiquitination. J Virol 72: 5174–5181.

    CAS  PubMed  Google Scholar 

  • Sibley WA, Bamford CR, Clark K (1985). Clinical viral infections and multiple sclerosis. Lancet 1: 1313–1315.

    Article  CAS  PubMed  Google Scholar 

  • Simmons RD, Bernard CCA, Singer G, Carnegie PR (1982). Experimental autoimmune encephalomyelitis. An anatomically-based explanation of clinical progression in rodents. J Neuroimmunol 3: 307–318.

    Article  CAS  PubMed  Google Scholar 

  • Smith ME, Eller NL, McFarland HF, Racke MK, Raine CS (1999). Age dependence of clinical and pathological manifestations of autoimmune demyelination. Implications for multiple sclerosis. Am J Pathol 155: 1147–1161.

    CAS  PubMed  Google Scholar 

  • Sobel RA, van der Veen RC, Lees MB (1986). The immunopathology of chronic experimental allergic encephalomyelitis induced in rabbits with bovine proteolipid protein. J Immunol 136: 157–163.

    CAS  PubMed  Google Scholar 

  • Teuscher C, Butterfield RJ, Ma RZ, Zachary JF, Doerge RW, Blankenhorn EP (1999). Sequence polymorphisms in the chemokines Scyal (TCA-3), Scya2 (monocyte chemoattractant protein (MCP)-1), and Scya12 (MCP-5) are candidates for eae7, a locus controlling susceptibility to monophasic remitting/nonrelapsing experimental allergic encephalomyelitis. J Immunol 163: 2262–2266.

    CAS  PubMed  Google Scholar 

  • Trotter JL, Pelfrey CM, Trotter AL, Selvidge JA, Gushleff KC, Mohanakumar T, McFarland HF (1998). T cell recognition of myelin proteolipid protein and myelin proteolipid protein peptides in the peripheral blood of multiple sclerosis and control subjects. J Neuroimmunol 84: 172–178.

    Article  CAS  PubMed  Google Scholar 

  • Tsunoda I, Fujinami RS (1996). Two models for multiple sclerosis: Experimental allergic encephalomyelitis and Theiler’s murine encephalomyelitis virus. J Neuropathol Exp Neurol 55: 673–686.

    Article  CAS  PubMed  Google Scholar 

  • Tsunoda I, Kuang L-Q, Tolley ND, Whitton JL, Fujinami RS (1998). Enhancement of experimental allergic encephalomyelitis (EAE) by DNA immunization with myelin proteolipid protein (PLP) plasmid DNA. J Neuropathol Exp Neurol 57: 758–767.

    Article  CAS  PubMed  Google Scholar 

  • Tsunoda I, Kuang L-Q, Theil DJ, Fujinami RS (2000). Antibody association with a novel model for primary progressive multiple sclerosis: Induction of relapsing-remitting and progressive forms of EAE in H2 S mouse strains. Brain Pathol 10: 402–418.

    Article  CAS  PubMed  Google Scholar 

  • Tsunoda I, Tolley ND, Theil DJ, Whitton JL, Kobayashi H, Fujinami RS (1999). Exacerbation of viral and autoimmune animal models for multiple sclerosis by bacterial DNA. Brain Pathol 9: 481–493.

    Article  CAS  PubMed  Google Scholar 

  • Weerth S, Berger T, Lassmann H, Linington C (1999). Encephalitogenic and neuritogenic T cell responses to the myelin-associated glycoprotein (MAG) in the Lewis rat. J Neuroimmunol 95: 157–164.

    Article  CAS  PubMed  Google Scholar 

  • Weinshenker BG, Santrach P, Bissonet AS, McDonnell SK, Schaid D, Moore SB, Rodriguez M (1998). Major histocompatibility complex class II alleles and the course and outcome of MS: a population-based study. Neurology 51: 742–747.

    CAS  PubMed  Google Scholar 

  • Whitton JL, Oldstone MBA (1996). Immune response to viruses. In: Fields Virology. Fields BN, Knipe DM, Howley PM (eds). Third edition Lippincott-Raven: Philadelphia, pp 345–374.

    Google Scholar 

  • Yoshimura T, Kunishita T, Sakai K, Endoh M, Namikawa T, Tabira T (1985). Chronic experimental allergic encephalomyelitis in guinea pigs induced by proteolipid protein. J Neurol Sci 69: 47–58.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert S. Fujinami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Theil, D.J., Tsunoda, I., Rodriguez, F. et al. Viruses can silently prime for and trigger central nervous system autoimmune disease. Journal of NeuroVirology 7, 220–227 (2001). https://doi.org/10.1080/13550280152403263

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/13550280152403263

Keywords

Navigation